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I. INTRODUCTION 

In communication and control work a large class of theo­

retical and practical problems deal with the separation of 

random signals from random noise. These problems are solved 

by applying linear estimation techniques where an optimal 

estimate of a random signal, random variable, or control 

parameter is determined. The optimal estimate is generated 

from measurement data corrupted by additive noise. 

Gauss (1) performed the first studies to determine least-

squares estimates of unknown parameters in the early nine­

teenth century. The next significant work dealing with esti­

mation of random signals was accomplished by Wiener (2) in the 

1940's. This work showed that the time-domain approach to the 

solution of particular linear estimation problems leads to the 

integral equation called the Wiener-Hopf equation. The solu­

tion of this equation yields the optimum filter (Wiener 

filter) to the so-called Wiener filter problem, When noisy 

measurement data is applied to the optimum filter, the output 

is an unbiased minimum variance estimate of the random signal. 

The practical usefulness of the Wiener-Hopf equation for solu­

tions to the Wiener problem is limited for a number of 

reasons: (i) The filter cannot be easily synthesized from 

its impulse response specification which is the normal form 

of the solution. (ii) Computer solution of the Wiener-Hopf 

equation is generally not recommended for complex problems. 

Bode Shannon. (3) attacked the Wiener filter problem in 1950 
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by a frequency-domain viewpoint. Considerable work in this 

area continued during the 1950's but the preceding limitations 

were not eliminated. 

With the advent of the digital computer, interest in 

recursive least-square estimates was stimulated using differ­

ential or difference equations. Kalman (4) in 1960 intro­

duced a new approach to the problem of linear filtering for 

random sequences (discrete case) . Using the state-transition 

method he found that a single derivation applied to a very 

large class of problems. In 1961 Kalman and Bucy (5) extended 

the original method to random processes (continuous case) by 

deriving a matrix differential equation called the covariance 

equation whose solution completely specified the optimal 

filter. Thus the matrix differential equation was the trans­

formed equivalent of the Wiener-Hopf integral equation. The 

former, however, could be readily solved on a digital com­

puter. The new "Kalman filtering" approach to linear filter­

ing eliminated the limitations encountered when using the 

Wiener-Hopf equation and has today proved its practical use­

fulness in aerospace and military systems. 

The measurement of a random signal in the presence of 

additive noise can be performed continuously or at discrete 

intervals. In a Kalman filter, discrete or sampled measure­

ments are linear functions of the "state" of the estimation 

problem corrupted by noise,and they are used to determine an 

optimal estimate of the state at the time of the measurement. 
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Continuous noisy measurement data processed in a Kalman-Bucy 

filter yields a minimum optimal estimation error which is 

approximately equivalent to the optimal estimation error re­

sulting from a discrete Kalman filter with an infinitesimal 

sampling interval. For many applications it is desirable and 

more efficient from a computer standpoint to use the discrete 

Kalman filter with sampled measurements rather than the 

Kalman-Bucy filter even though continuous measurement data 

is available. 

The possibility exists, when additive measurement noise 

is present, that the estimation error of the discrete random 

state can be reduced in a discrete Kalman filter if all the 

continuous measurement data is used to form a better discrete 

"sample" of the continuous data in lieu of simply accepting 

a raw sample. The object of this work is to explore this 

approach in discrete Kalman filtering. 

Two specific methods are introduced for processing the 

continuous measurement data: interval-averaging and linear-

ized-sampling. These processes yield discrete "samples" 

which when incorporated into the usual discrete Kalman filter 

produce a modified set of Kalman filter equations with 

delayed states as observables. The new Kalman filtering equa­

tions are used to analyze two examples which verify that the 

discrete estimation error can be reduced by preprocessing 

continuous measurement data. 
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II. REVIEW OF LITERATURE ON KALMAN FILTERING 

Before reviewing the current literature on Kalman 

filtering, it might be well to define the basic problem of 

unbiased, minimum variance, linear estimation as given by 

Sorenson and Stubberud (6). The definition must be referred 

to a mathematical model as given by a linear dynamical system 

described by a linear, stochastic, vector differential equa­

tion of state evolution and by a measurement model supplying 

the only information about the state. Now, given all measure­

ment data ̂ (T) up to T as a linear function of the state X(t) , 

then define the unbiased, minimum variance linear (optimum) 

estimate as x(t It) where: 

(i) E[x(t IT)] = E[x(t)]. 

This equation implies that x(t jr) is unbiased, 

(ii) Loss Function = L - E{[x(t)-x(t (T) ]T [x(t)-x(t IT)]} 

= minimum. 

The estimate x(t It) is optimum in the sense that 

the expected value of the square of the error 

magnitude is minimized when x(t It) is chosen to 

satisfy the loss equation. 

The types of estimation problems are divided into three 

categories each based on the amount of measurement data ^(t) 

available as described by T. 

Prediction problem: The optimal estimate of the state 

x(t) at some future time t is to be determined from all 
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data ̂ (t) where Kt. 

Filtering problem: The optimal estimate of the state 

x(t) at the present time t is to be determined from all 

data ̂ (t) where T=t. 

Smoothing problem: The optimal estimate of the state 

x(t) at some previous time t is to be determined from 

all data where T>t. 

Following the publications by Kalman (4) and Kalman and 

Bucy (5) of their pioneering works on linear filtering and 

prediction problems many researchers entered the field. The 

applicability of their approach to computer solution of prac­

tical problems made Kalman filtering very popular. Many 

valuable contributions have been made that either clarify the 

basic work or broaden its applicability by the use of general­

izations and extensions. Only the most significant contribu­

tions that directly affect this work will be mentioned. 

The v;ork by Lee (7) in 196". derived the discrete Kalman 

filter in a far more straightforward way by eliminating the 

method of orthogonal projections which Kalman used in his 

discussion. He also presented the continuous Kalman filter 

model and solution in a very concise form. Additional insight 

and greater clarity of the discrete Kalman filtering process 

was provided by an unpublished work by Brown (8) in 1964 using 

a different approach to derive the Kalman equations. 

The subject of Kalman filtering including theory, compu­
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tational considerations, and applications was thoroughly 

covered by Sorenson (9) in 1966. The major portion of the 

presentation concerned the time-discrete model since the 

author felt it is the most natural version for implementation 

on a digital computer. His derivation of the Kalman filter 

using state vector and state space notions was accomplished 

in a manner which relied upon physical intuition. This pro­

vided much insight into linear estimation theory as developed 

by Kalman and made the presentation more readable than some 

earlier works. A simplified derivation for an unforced 

dynamical system was developed first with extensions to deter­

ministic and random forcing functions, and correlated se­

quences. An interesting development of the Kalman-Bucy filter 

equations for continuous dynamical systems and measurement 

processes was introduced. By causing the sampling interval 

to become infinitesimal in the discrete model, the resulting 

continuous filter model involved differential rather than 

difference equations and white noise processes rather than 

white noise sequences. 

Horton (10) in 1967 investigated one method of presmooth-

ing or averaging continuous measurements within discrete time 

intervals before incorporating them into a discrete Kalman 

filter. The derivation was limited to smoothing the continu­

ous a priori measurement error rather than only the measure­

ment which caused some difficulties with this technique. 

Continuous measurement noise was realistic in that it was 
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assumed to be colored or Markov in character. A small range 

of permissible discrete time intervals was found to exist 

where this method of presmoothing yielded improved results 

over normal discrete sampling methods. 

In the Kalman-Bucy (5) filter for continuous linear 

dynamic systems it was assumed that all measurement noise 

processes were gaussian and "white," i.e., noise with correla­

tion times short compared to times of interest in the system. 

Clearly this is a restriction not always satisfied in prac­

tice, therefore it was deemed necessary to generalize their 

results for cases where measurement noise exhibits correlation 

between different instants of time i.e. , the noise is 

"colored". Bryson and Johansen (11) in 1965 accomplished 

this generalization by introducing a "shaping filter" which 

simulated the colored noise from white-noise inputs. The 

colored-noise vector became a part of an augmented state 

variable vector and the measurements contained only linear 

combinations of the augmented state variables. This pro­

cedure reduced the more general problem of colored measure­

ment noise to a problem of the type considered by Kalman and 

Bucy. This technique was clearly illustrated in several 

simple examples by Nahi (12). An optimal filtering problem 

with Gauss-Markov measurement noise was reduced to a problem 

of the Kalman and Bucy type by Stear and Stubberud (13) in 

1968 without using a "shaping filter" and state vector aug­

mentation. 
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Of course in the successful application of Kalman filter 

theory a paramount requirement is that the model must truly 

represent the physical situation. There are cases where the 

physical problem at hand does not fit the assumed format of 

discrete Kalman filter even after the generalization to 

"colored" measurement noise has been made. More specifically, 

consider the discrete estimation problem given observations 

which are functions of the integrals of the system states over 

a sequence of finite intervals rather than simply functions of 

the system states directly. This problem, which does not fit 

the prescribed format of the discrete Kalman filter, was con­

sidered by Brown and Hartmann (14) in 1968. A new relation­

ship was presented which showed that the measurement was 

linearly related to the previous as well as the present 

states. The necessary recursive filter techniques were 

adapted to this situation. 

In 1970 Sorenson and Stunberud (ôj discussed the funda­

mental aspects of the unbiased, minimum variance, linear 

estimation problem, i.e. , the theory of Kalman filtering, in 

depth. The presentation included complete derivations of the 

Kalman-Bucy filter equations, Kalman discrete filter equa­

tions, treatment of the colored measurement noise problem, 

and behavior aspects of the estimate. 
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III. THEORY OF KALMAN FILTERING 

A. Dynamic System and Measurement Model 

As described in the review of literature, the statement 

of the estimation problem must be referred to a mathematical 

model. Consider the linear, vector differential equation 

which describes the state of a continuous dynamical system 

x(t) = F(t) x(t) + w(t) (3.1) 

where 

x(t) is the n-vector of state variables or state vector 

F(t) is an nxn plant matrix v;ith time continuous elements 

w(t) is an n-dimensional, gaussian white-noise process or 

plant driving function. 

Let w(t) have the statistics 

E{w(t)} = 0 for all t 

E{w(t^)w^(t2)} = Q(t)6(t^-t2} 

where Qft) is an nxn symmetric matrix and -(t^-t^) is the 

Dirac delta function or impulse function. 

The relationship between the state vector x(t) and the 

only available information about the state defined £(t) for 

m-vector of measurements is given by the measurement model 

equation as 

£(t) = M(t) x(t) + v(t) (3.2) 

where 

M(t) is an mxn observation matrix with time continuous 

elements 
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v(t) is the measurement noise and is an m-dimensional 

gaussian white-noise process. 

Let v(t) have the statistics 

E{v(t)} = 0 for all t 

E{v(ti)v'^(t2)} = R(t)6Ct^-t2) 

where R(t) is an mxm symmetric matrix and ^(t^-tg) is the 

Dirac delta function. Generally the plant noise w(t) and the 

measurement noise v(t) are considered to be independent. 

The general solution of Equation 3.1 is 

X 
x(t) = ({)(t,to) xCtp) + J (l)(t ,T)w(T:)dT _ (3.3) 

to 

where (t)(t,x), the state transition matrix, is the solution of 

the matrix differential equation 

= F(t) OCt,?) for all T (3.4) 

Of course Equations 3.2 and 3.3 can be combined yielding the 

general form of the measurement model. There are several 

important properties of the state transition matrix which will 

be used later in this investigation. 

Property: 1 

*(T,T) = I for all T (3.5) 

Property: 2 

= 4^t2,ti)4(ti,to) (3.6) 

Property: 3 

4^t^,t2) = <l'"^(t2 ,tj^) (3.7) 
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For the linear fixed system, where the plant matrix F is a 

constant nxn coefficient matrix, the calculation of the state 

transition matrix (j)(t) may be performed by the frequency-

domain method where 

4,(t) = ̂ ^-I[sl-F]-1 (3.8) 

This method is generally the most convenient for fixed systems 

even though the inverse of [sI-F] may be difficult to deter­

mine . 

The physical situation may now be mathematically modeled 

by the dynamical system and the measurement model Equations 

3.1 and 3.2 respectively. The state transition matrix de­

scribes the transition of the state of the system in that it 

describes the motion of the state vector in state space from 

its initial position at tg to its final position at t. The 

first term of the general solution Equation 3.3 represents 

the initial condition response of the system state variables 

4- +-4 r»*-» Tno'f""v»T*\r 
J «?^c4.us/ ctw V u uxixv/vigii. uiJiw VJ. iiic4.L.xj..rw 

while the second term represents the forced response due to 

the white noise driving functions. The latter response term 

creates an uncertainty in the actual value of the state vcctor 

at time t. Perfect measurements of each state variable at 

time t could cancel this uncertainty. However, physical 

measurements with infinite precision can never be made; in 

addition direct physical measurement of some state variables 

is often not possible. A filter is therefore required to 
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determine the "best" estimate in some sense of the state 

vector from available measurement data and thus reduce but 

not necessarily eliminate the uncertainty about the true 

value of the state vector at time t. The Kalman filter is 

a technique devised to solve the linear estimation problem 

in this manner. 

B. Time-Discrete Kalman Filtering 

The discrete Kalman filter is associated with a mathemat­

ical model; however, in this case linear vector difference 

equations are specified. The state vector of a dynamical 

system at time t^ is given by the equation 

X(t^) = + ÎLi;-! 

or using simplified notation 

ik = *k-l ïk-l * ïk-l (3-9) 

where 

is the n-voctcr of state variables or state vector 

at time t^ 

is the state transition matrix over the interval 

(^k'^k-l) 

is the plant noise and is an n-dimensional vector 

random sequence. 

From Equations 3.1, 3.3 and 3.9 it can be shown that 

ïk-i = / 

•'k 

^k-1 

<})(tj^,T)w(T)dT (3.10) 
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Measurement data are obtained at discrete instants of time 

tj^ and this information is assumed to be related to the state 

vector by the measurement model equation 

ilc = Mk Sk + % 

where 

is an mxn observation matrix 

Vj^ is the measurement noise and is an m-dimensional 

vector random sequence 

v^ and are assumed to be uncorrelated. 

Given the model Equations 3.9 and 3.11 the recursive 

Kalman filter must yield an estimate x^ of the state vector 

at t^ that is a linear combination of an estimate at t^^^ and 

the measurement data This estimate must be optimum in 

the sense that 

E{(x^ - X^)^(X|^ - } = minimum value (3.12) 

Stating the above mathematically by defining an unknown gain 

matrix, which will be chosen later to optimize the estimate, 

yields the Kalman discrete filter equation 

:k = &k + "kfik - ip C3.13Î 

where 

is the a posteriori estimate of the state vector at 

time t^ 

x^ is the a priori estimate of the state vector at 

time t|̂  

is the optimal gain matrix at time t^ 
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is the measurement data at time tj^ 

is the a priori estimate of the measurement value at 

time tj^. 

The first term of Equation 3.13 is the predicted estimate of 

the state vector at t, since 

when no measurement information is available. The expected 

This is combined with the measurement data in the second term 

of Equation 3.13 to modify and correct the original estimate 

given by the first term. 

The derivation of the Kalman filtering equations will not 

be completely presented here. Only definitions, key steps and 

any physical insight necessary to total understanding of the 

final results will be given. Numerous references treat this 

subject in depth. For example, see Kalman (4), Lee (7), and 

Sorenson (9). Several definitions are required. 

A . 
e^ = x^ - x^ = a posteriori estimation error in the 

k 

-k " ̂ k-1 -k-1 
(3.14) 

measurement value or a priori estimate is 

[3.15] 

state vector 

e^ = x^ - x^ = a priori estimation error in the state 

vector 

A T = E{e^ e^}= covariance matrix of a posteriori esti­

mation error 

I u I 
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^ I I T 
= E{e^ } = covariance matrix of a priori estima-

tion error 

L = trace = Ele^e^} = loss function 

A T 
= E{v^ v^} = covariance matrix of measurement noise 

sequence 

A T 
^ = Etw^ ^ = covariance matrix of plant noise 

sequences 

A 
At = t^ - t^ ̂  = time interval 

Using the Kalman discrete filter Equation 3.13 and the 

above definitions allows e^ to be formed as 

«k = - Xk . (I - 4. C3.16) 

Noting that Equation 3.12 for the optimal estimate can be re­

written as the minimum value of the loss function implies that 

the loss function should be formed using Equation 3.16. The 

optimum gain matrix is then determined by minimizing the loss 

function with respect to by letting 

= 0 (3.17) 

The result is 

Kk = 'k 4 ("k h 4 * (3.IS) 

T 
Again using Equation 3.16 to form the matrix E{e^ e^} after 

noting that e^ and v^ are uncorrelated reduces to 

h - K -  Kk(Mk Pk < * V^)K^ (3-19) 

I iT 
Forming the matrix E{e^ e^^}, using the fact that 
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Ç-k ' &k - ïk = •k-l âk-1 - Hk-l (3-20) 

from Equations 3-9 and 3.14, produces the equation 

" ̂ k-1 ^k-1 *k-l "k-1 (3.21) 

Thus the discrete Kalman filter is defined by Equations 3.13, 

3.14, 3.18, 3.19 and 3.21. 

C. Kalman Filtering with Delayed States as Observables 

Recursive filtering techniques can be applied to a random 

process even when the observable has a linear relationship to 

the previous as well as the present state variables (14). 

Typically the physical situation may be faithfully represented 

by the dynamical model Equation 3.9 but does not conform to 

the measurement model Equation 3.11 as assumed in the discrete 

Kalman filter. Consider a measurement process where only the 

integrals of state variables over a sequence of finite time 

intervals are available. Now define a new state which is 

equal to the integral of the former state. Then 

.t. 
fk 

measurement = j (former state) + noise 
^k-1 

and 

measurement = new state - new state 
k 

+ noise (3.22) 

Equation 3.22 can be generalized to form a revised measure­

ment model. 

Ik = "k ïk + "̂ k ïk-l * Ik (3-23) 
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which shows the measurement data at t^ is linearly dependent 

on the present state at tj^ and on the previous state at t^^^. 

The new mathematical model, Equations 3.9 and 3.23, can 

be transformed into the format of the original Kalman filter 

model. Equations 3.9 and 3.11, by employing a double-state 

approach. The state vectors and are combined into a 

new state vector and the usual Kalman filter equations apply. 

A more direct or straightforward approach is to derive a new 

set of recursive equations for the new mathematical model 

just as was done originally for the Kalman filter. 

The major deviation in this derivation is in the inter­

pretation of the a priori estimate which will always be 

the optimal estimate of based on all measurement data up 

through 2 ' Therefore 

h ° \ îk " '̂ k k-l "k 4k-l Ll " \ ï.k-1 

where all definitions made previously still apply and where 

ïk = •k-l ïk-l * ïk-l (3.9) 

Ik = % ïk * ik-l * Ik (3.23) 

ik = Xk - (3.16) 

I T 
o z r v  —  v = / K  a  _  t . r  f  %  ' Z  H  ^  

-k -k -k ^k-l -k-1 -k-1 

A f , , ; 

V 

%k = ïk + ̂ (Ak - ik' (3-25) 

Observe that Equation 3.25 is identical to Equation 3.13 

except the optimum gain matrix is now denoted bj^. As before 
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the quantities e^, Pj^, and L are formed so that the loss func­

tion can be minimized with respect to the optimum gain matrix 

b^. Since the vector e^ is unchanged remains the same as 

given before by Equation 3.21. 

Thus the recursive Kalman filtering equations with delayed 

states as observables are found to be 

%k ' + "k'̂ k - ik' 

-k ' *k-l -k-1 (3-14) 

Pk = •k-l Pk-1 *k-l + "k-l C3.21) 

Qk = (̂ k K < * V * \ h-i < ' "k Pk-1 *1-1 < 

* "k •k-l \-l < 

H = Ck < ̂ Vl Vl <'«k^ (3.27) 

Pk = Pk - "k % "k (3-28) 
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IV. OPTIMUM DISCRETE PROCESSING OF CONTINUOUS MEASUREMENTS 

The measurement of a random signal in the presence of 

additive noise can be performed continuously or at discrete 

intervals. A continuous minimum variance estimate x(t IT) of 

the state vector x(t] is obtained from the Kalman-Bucy filter 

when continuous noisy measurement data is available. A dis­

crete minimum variance estimate xCt^) is determined from the 

Kalman filter when the only available information about the 

states are discrete noisy measurements i.e., measurements 

obtained at discrete instants of time. Of course the discrete 

estimate may be almost as good as the continuous estimate if 

measurements are taken frequently. A natural extension of 

this is to convert noisy continuous measurement data into dis­

crete form by sampling for processing in a discrete Kalman 

filter. 

Assuming that the measurement data is a combination of 

both continuous and discrete physical processes it can be 

demonstrated that shortcomings exist when using either filter 

exclusively. Using all the data in a Kalman-Bucy filter will 

produce an estimate based solely on the continuous portion of 

the data since this filter cannot process discrete data. In 

this case all the discrete information is lost. Processing 

all the data by the discrete Kalman filter method using a sam­

pling technique will produce estimates based on both continu­

ous and discrete portions of the data. The estimation error 
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will depend considerably on the sampling frequency. It would 

also be necessary to sample the continuous data coincidentally 

with any discrete data available and to process the discrete 

data as outlined in Chapter III. Even with these considera­

tions some of the available information in the continuous 

portion of the data will be lost if the sampling interval is 

not unrealistically small. 

Considering the fact that the Kalman filter is composed 

of a group of recursive equations which are particularly well 

suited to implementation on the digital computer, all estima­

tion may be restricted to the discrete Kalman filtering method. 

This being the case, it may be possible to form a better dis­

crete value of the continuous noisy measurement data in lieu 

of simply sampling the data. This improved value would then 

serve as the discrete measurement in the usual Kalman filter 

equations. 

In particular it is the measurement noise which prevents 

the elimination of all uncertainty about the observable states. 

Thus, if the effects of measurement noise in continuous data 

could be reduced, some reduction in the state vector estima­

tion error could be expected. Smoothing the measurement data 

is certainly one method of separating the true measurement 

signal from the measurement noise. The general philosophy of 

James, Nichols, and Phillips (15) can be applied here equally 

as well as they used it for servomechanisms. In applying 

their method the basic form of the smoothing process is 
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intuitively selected. The output of this process is incor­

porated in the discrete Kalman filter where the expected value 

of the square of the error magnitude is minimized with respect 

to the gain matrix. In one sense the smoothing process could 

be thought of as a "prefiltering" process prior to use of the 

Kalman filter. 

It should be pointed out before proceeding that the re­

duced state vector estimation error will be optimum for the 

particular smoothing process selected. It is not the absolute 

minimum estimation error possible since the smoothing process 

was chosen intuitively before the optimization process was 

applied. 

Several comments should be made regarding the smoothing 

process. The smoothing must take place over the continuous 

finite time interval. The output of the smoothing process 

must be a discrete value to be of any practical value in a 

discrete filter. Prefiltcring the measurement data will 

significantly change the usual Kalman filter model; therefore, 

new equations must be derived. Hopefully the prefilter will 

reduce the state vector estimation error without appreciably 

increasing instrumentation and computer costs and will more 

effectively use all the available continuous data. 

Since in physical situations the measurement noise sta­

tistics may be white noise and even more realistically may be 

colored, both cases will be considered in generalized form and 
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by example. The white noise case is included because in gen­

eral the colored case is the more difficult problem and more 

costly for the computer to solve. Therefore, if correlation 

time is quite small, it may be sufficient to assume white 

measurement noise. This assumption is possible because white 

noise implies zero time correlation. 

A. Interval-Averaging Data Containing White Noise 

As a first choice select a simple integrating process 

which averages the continuous noisy measurement data over the 

time interval. The output of the filter is a discrete value 

as required. In addition, the process will smooth the contin­

uous measurements to reduce unwanted measurement noise. 

Define the interval-averaging process as 

A 1 

where z(t) is the continuous measurement data. Observe that 

the prefilter is smoothing only the measurement and not the 

a priori estimation error. Using the a priori estimation er­

ror creates a basic problem which is discussed by Morton (10). 

A block diagram for a generalized system is shown in 

Figure 1 for the case where the plant and measurement noise 

are both white noise. The continuous dynamical system and 

measurement model equations referring to this diagram are 

respectively 



www.manaraa.com

w(t)  
I 

u(t)  z(t)  

v{t)  

w 
va 

Figure 1. Block diagram for generalized system with white measurement noise v(t) 
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û(t) = F(t) u(t) + w(t) 

z(t) = H(t) u(t) + v(t) 

(4.2) 

(4.3) 

where all quantities are defined as in Chapter III except that 

the state vector is now called u(t) and the observation matrix 

is H(t). 

The derivation of the new discrete Kalman filtering 

equations is begun by substitution of Equation 4.3 into 

Equation 4.1. The result is 

The latter term defined 5^^ will remain the modified discrete 

noise contribution since in this case the noise v(t) is not 

being treated as a state variable. The averaging method also 

eliminates the problem of infinite variance which results from 

sampling data containing white noise. The former term is 

treated by defining a new state 

y(t) = /H(t) u(t) dt (4.5) 

so Equation 4.4 becomes 

ik ' it * ŝ k (4.6) 

where 
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By differentiating 

u(t) = uCt) 

Y_(t) = / Il(t) u(t) dt 

yields 

u(t) = F(t) u(t) + w(t) 

^(t) = HCt) u(t) 

and the new continuous plant model becomes 

u(t)' 'F(t )  O" u(t) w(t) 

i(ti H(t) 0 Z(t)  0 

(4.2)  

(4.8)  

(4.9)  

The state transition matrix for Equation 4.9 is defined by 

d*(t,t%_i) Û 

dt 

and by 

F(t)  0 

H(t) 0 

*k- l  "  *( t , t t_T) 

0(t,t^ ^) (4.10) 

k-1' 
(4.11) 

t=ti 

Finally for Lhe vvuite measurement noise system given by Equa­

tions 4.2 and 4.3 the new generalized discrete plant model is 

• 

iik ^k-i »t. 
w(t) 

" *k-i + I t  *(t%,T) dx (4.12) 

Zk, 
" *k-i 1—

4 À
 

j^k.i K 0 

and from Equation 4.6 the generalized discrete measurement 

model is 

-k ^ Ât^ 

where 

^k 

Ik 

MO - ^] -k-1 

%k- l  

+ (4.13) 
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v(t) dt (4.14) 

The generalized mathematical model Equations 4.12, 4.13 

and 4.14 are in exactly the same form as the Kalman filter 

with delayed states given in Chapter III where 

The new equations were generated directly from the gen­

eralized continuous system Equations 4.2 and 4.3 when averag­

ing continuous noisy measurements containing white noise. 

B. Interval-Averaging Data Containing Colored Noise 

It has been shown that the colored-noise (i.e., noise 

which exhibits correlation at different instants of time) 

problem can bo successfully approached when this noise c:in ho 

described by a shaping filter driven by white noise. The 

problem is then reformulated by state vector augmentation to 

obtain a system in which only white noise appears explicitly. 

Thus the colored-noise problem will then fit the format of 

the discrete Kalman filter model. Treating the noise as a 

state variable yields a measurement model with no measurement 

noise term. 

The block diagram in Figure 1 must be revised with the 

addition of a shaping filter as shown by Figure 2 for the 

colored measurement noise case. The continuous system equa-

ïk = •k-i ik-i * ïk-i (3.9) 

ik = "k ïk + ïk-1 + ïk (3.23) 



www.manaraa.com

w(t) 
•i 

F(t) F(t) 

u(t) 
H(t) H(t) 

z(t) 

+ 

n(t) 
+ 

n(t) 

/ A ( t )  

J 
5-

+ 
9; 

V  ( t )  

Figure 2. Block diagram for generalized system with colored measurement 
noise n(t) and shaping filter 
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tions corresponding to Figure 2 before state vector augmenta­

tion are 

u(t) = F(t) u(t) + w(t) (4.15) 

^(t) = H(t) u(t) + n(t) (4.16) 

The noise n(t) is a zero mean colored-noise process described 

by the shaping filter 

n(t) = A(t) n(t)+Bv(t) (4.17) 

where A(t) and the statistics of the white noise Bv(t) are 

chosen so that n(t) has the desired statistical character. 

State vector augmentation yields the reformulated system 

(4.18) 

u(t)' F(t) 0 u(t) w(t) 

n(t) 0 A(t) n(t) B v(t) 

z(t) = [H(t) I] u(t)] + 0 

n(t) 

(4.19) 

wnere it is assumea Vi^tj ana Wi^tj are uncorre latea wni te-noise 

processes. Observe that the measurements in the augmented 

system are perfect since the measurement error term is zero. 

The equivalent discrete measurement is determined by 

combining Equations 4.1 and 4.19 to obtain 

Ik ' k "(t) yit) dt . 1; n(t) dt • (4.20) 

where 6z^ = 0. 

It might be well to point out here that the term 



www.manaraa.com

29  

involving n(t) of Equation 4.20 must be simplified in terms 

of a new state variable just as will be done for the term 

preceding it since the measurement noise is being treated as 

a state variable creating perfect measurements. Thus this 

term is not a noise term in Equation 4.20 because the noise 

terra is zero. Therefore define two new states 

A 
%(t] = /H(t) u(t) dt 

A 

(4.21) 

sCt) = /n(t) dt (4.22) 

Substitution of Equations 4.21 and 4.22 into 4.20 simplifies 

to 

-k " + ^[s(t^) - 5(t%_i)] + 0 (4.23) 

By differentiating u(t), n(t), ̂ (t) and s(t) yields 

u(t) = F(t) u(t) + w(t) (4.15) 

n(t) = A(t) n(t) + B v(t) (4.17) 

%(t) = H(t) u(t) (4.24) 

s(t) = n(t) (4.25) 

which implies that the new continuous plant model is given by 

the equation 

w(t) 

v(t) 

û(t) F(t) 0 0 0 u(t) 

n(t) 0 A(t) 0 0 n(t) 

i(t) H(t) 0 0 0 l(t) 

s(t) 0 10 0 s(t)^ 

0 

0 

(4.26) 

Define the state transition matrix as 
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F(t) 0 0 Û 

0 A(t) 0 0 

H(t) 0 0 0 

(4.27) 

0 10 0 

and as in Equation 4.11. 

Thus using Equation 4.26 the new discrete plant model 

for the colored measurement noise case given by Equations 4.15, 

4.16, and 4.17 is 

Hk^l '  
W(T) 

^k Hk-l  
rh 

B V ( T )  

Ik  
" *k- l  

Ik- l  

+ 1 <fc(U, T )  
0  

d T  ( 4 . 2 8 )  

_-k .-k-1 
0  

and the new discrete measurement model is given by liquation 

4.23 as 

-k - [0 0 It If] 

Zk 

-k 

^k-i 

-k-l 

Zk-1 

-k-1 

+ 0 (4.29) 

The generalized mathematical model, Equations 4.28 and 

4.29, form a discrete Kalman filter with delayed states as 
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observables. It was derived directly from the generalized 

continuous system described by Equations 4.15 and 4.16 when 

averaging continuous measurements containing colored noise 

defined by Equation 4.17. 

C. Sampling Optimum-Linearized Data Containing White Noise 

The integrating prefilter previously selected is defi­

nitely one of the more common techniques to average continuous 

data; however, it does have several shortcomings. Its most 

serious deficiency is that it does not allow for any drift or 

change of the noise-free measurement value over the time 

interval. In other words, the constant measurement value 

resulting from the averaging prefilter could be thought of as 

the "best" equivalent measurement value not only at t^ but at 

any time t in the interval t^ ^ to t^. This obviously is not 

the case if the noise-free measurement value does in fact 

change over the time interval At. If the noise-free measure­

ment value were almost constant, the simple averaging pre­

filter would be excellent. 

As a second choice consider a prefiltering process which 

assumes that the noise-free measurement value does change 

A"f"  Tn o c  c  ni rn a  +V»r i+"  4 ^  c  r»Vin i -»nr /% 4c» r ivww»/^v4Tno4*/ \T- \ r  

linear over the time interval. Then the noisy measurement 

data z(t) will reflect this trend over the time interval. 

Now a linear least square approximation can be formed for 

each of the p measurements in z^t] which of course is a p-
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vector here. Thus let the continuous noisy measurement 

Zj^(t) be approximated by 

L^(m^,t,b^) •= + b^ (4.30) 

This is shown in Figure 3 where constants m^ and b. are chosen 

such that 

A^ [z.(t] - L.(m.,t,b.)]^ dt = minimum (4.31) 
t k - 1  ^  1 1 1  

which gives a least square approximation of for z^(t). 

Combining Equations 4.30 and 4.31 defines the equation 

FiCm^.b^) = [z.(t) - (t-tj^_^)m. - b.]^ dt (4.32) 
k-1 

Now minimize with respect to m^ and b^. This yields 

9F. 
357 = -2 Jtj^_^[Zi(t) - mi(t-tk_i) - b.][t-tj^_^]dt = 0 (4.33) 

3Fi tk 
= -2 [z-i(t) - m-(t-t-^_|) - b.ldt = 0 (4.34) 

Equations 4.33 and 4.34 can now be solved simultaneously for 

m^ and b^ as functions of z^(t). 

Note that Equation 4.30 for L^(m^,b^) could have been a 

vector equation L(m,b) where the i^^ element is L-(m^,b.). 

Then the scalar quantity F, Equation 4.32, could have been 

defined as a scalar in terms of vectors as 
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Figure 3. Linear least square approximation to a noisy measurement 
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A 
F(m,b) = ^[z(t) - (t-tj^_^)ni-y [z(t) - dt 

k-1 

K-1 

= minimum (4.35) 

where i varies from 1 to p. Then observe that 

3F(m,y 9F^(m^,b.) 

3m 
= 0 (4.36) 

is identical to Equation 4.33 and that 

9F(m,b) 9F.(m.,b^) 
= 0 (4.37) 

9DT 9b 

is identical to Equation 4.34 since all terms except the one 

involving m^ and bare treated as constants during the par-

+•-i a 1 diffATentiafinn nTnrpcc 

Rearranging Equation 4.33 leaves 

Mi f ̂  (t-tj^_^)^dt + b. i ̂  (t-tj^_^)dt = 

^k-1 ^k-1 

^k-1 

Evaluating this by change of variables leads to 

3 2 t t 
^ m^ + ̂  b^ = / ̂  t z.(t)dt - t^_^ / ̂  Zj^(t)dt (4.39) 

^k-1 ' ^k-1 

(4.38) 
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Rearranging Equation 4.34 in a similar manner gives 

m. J ̂  (t-t, , )dt + b. f ^ dt = J ̂  z. (t)dt (4.401 
I » .  K l  X * .  .  1  

^k-l ^k-l ^k-1 

and finally 

2 t 
m^ - At ^ z^(t)dt (4.41) 

^k-1 

Solving Equations 4.39 and 4.41 simultaneously yields 

bj = J (t)dt - t ZjWdt (4.42) 

" Vl " Vl 

Cl2tk_i + 6At) t^ 12 f^k 
m- f z. (t)dt + ̂  / t z.(t)dt 

" 'k.l ^, . ,3 ,  

From Equation 4.30 when t = t^ 

Li(mi,tk,bi) = At m^ + b^ 

= ̂  , Mat - V'"' 

z.(t) dt (4.44) 

^k-1 

If all measurements of z^(t) are treated as in Equation 4.44 

for i = 1, 2, •••p a p-vector is formed such that 

6 <• ^k (^^k-1 ^ 2At) ti 
tk = / t z(t)dt f ^ z(t)dt (4.45) 

t^_j At tk-1 

This equation defines the new prefiltering process which 

consists of sampling the linear least square approximation of 
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p noisy measurements at t = t^ for processing in a discrete 

Kalman filter. 

It is interesting to compare Equation 4.1 giving the 

interval averaging process with Equation 4.45. For the case 

where z^t) is a single constant measurement value with zero 

noise note that 

\ (4.46) 

and it can be shown that 

h = Zc (4.47) 

as expected. To demonstrate that the linearized data sampling 

technique is an improvement over simple data averaging for the 

cases where measurement values drift, consider a continuous 

noisy measurement defined as 

z(t) = t + 6z(t) (4.48) 

where ^z(t) is periodic deterministic noise defined 

6z(t) = 2 cos 27it (4.49) 

If tk-i = 0, t]( = 3, At = 3 then from Equation 4.1 the aver­

aged value is 
, .3 

'k " 
Zi. = J J (t + 2 cos 2ïït) dt 

0 

= 1.5 (4.50) 

and from Equation 4.45 the linearized sampled value is 

. 3 , 3 
= g j t(t + 2 cos2ïït)dt - g J (t + 2 cos2nt)dt (4.51) 

= 3.0 

A noisy measurement at t = 3 from Equation 4.48 is equal 
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to 5 while a perfect measurement if possible would be 3. Thus 

the value is a perfect value and is highly desired over the 

averaged value. Here, of course, sampling of z(t) would 

produce a value of 5 which also indicates both smoothing tech­

niques are improvements, in this case, over ordinary sampling. 

The equations of the generalized system as shown in 

Figure 1 are repeated here 

u(t) = F(t) u(t) + w(t) (4.2) 

z(t) = H(t) u(t) + v(t) (4.3) 

for the white measurement noise case. Combining Equations 

4.3 and 4.45 gives 

6 ^^^k-1 * 2At) 
~ —2" / ^ H(t) u(t) dt - 2 

At t^_^ At 

J ^ H(t) u(t) dt + 6L, 

tk-1 

(4.52) 

where 

A c ,^1. (^^ir_i 2At) 
SL, = r " t v(t) dt J " v(t) dt (4.53) 

« ^k-i " ^ 'k-f 

New states must be defined to simplify the first two terms on 

the right-hand side of Equation 4.52 for use in a discrete 

Kalman filter. Since v(t) is an additive white-noise process 

and is not being treated as a state variable, the latter term 

of Equation 4.52 remains the modified discrete noise contri­

bution defined 6L^. As with the interval averaging case this 

method eliminates the problem of infinite variance in a dis-
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Crete Kalman filter when sampling data containing white meas­

urement noise v(t). 

The first term of Equation 4.52 can be simplified by 

applying integration by parts. Consider the integral 

r ^ t H(t) u(t) dt 

^k-l 

and the formula for integration by parts 

b .b b 
y u dv = u V I - y V du (4.54) 

a 'a a 

and let dv = H(t) u(t) dt so v = /H(t) u(t) dt and let u = t 

so du = dt. 

So 

A t, 
J .  t Hft^ u T t l  dt = rrtUfHftl u f t i  dtll \ ^ -  f  ^  . t H(t) u(t) dt = [(t)(/H(t) u(t) dt)] - f 
t.1 .  1  If ^ f 

^k-1 ^k-1 

(;H(t) uCt) dt) dt (4.55) 

Defining states 

u(t) = u(t) (4.56) 

%(t) = /H(t) u(t) dt (4.57) 

x(t) = /(/H(t) u(t) dt) dt = /}^(t) dt (4.58) 

allows Equation 4.55 to be rewritten in terms of these new 

states as 

^k 
/ t H(t) u(t) dt = t^ %(%%) - iC^k-l^ • x^t%) 

^k-l (4.59) 

+ x(tk-l) 

Equations 4.56, 4.57, 4.58 and 4.59 can now be combined with 
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Equation 4.52 to form 

tk ^ ̂k-i zc^k-i) • ̂  %.(tk) 

+ ̂   ̂̂k-i ):(V - n 

^ ̂  Vi z(tk-i) + It z(tk-i) + % 

^ %(tk) St  ̂x(tĵ ) + + "SL, At -k 

(4.60) 

This shows that the new equivalent discrete measurement is 

now a function of only the time interval, the newly defined 

states at t^ and t^^^ and the modified discrete noise con­

tribution. 

Differentiated Equations 4.56, 4.57 and 4.58 become 

u(t) = F(t) u(t)+w(t) (4.61) 

^(t) = H(t) u(t) (4.62) 

x(t) = y;(t) (4.63) 

so that the new continuous plant model for the white-noise 

case is 

U(t)" 

i ( t )  = 

x(t) 

F(t) 0 0 

0 0 

u(t) 

I(t) 

^ r4.\ 

w(t) 

0 (4.64) 

As before the state transition matrix is defined 
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dt 

FCt) 0 0 

H(t) 0 0 

0 I 0 

(4.65) 

and 

•k-i = 
't=ti 

(4.66) 

Observe that if F(t) and H(t) are constant so is the new plant 

matrix constant. This results from a wise choice of the new 

states given by Equations 4.56, 4.57, and 4.58. Finally the 

generalized discrete plant model from Equations 4.64 and 4.66 

is 

^k-l 
W(T) 

/k 
= *k-l ^k-1 +  J  K t j ^.T) 0 dT (4.67) 

tk-1 

_-k_ -k-1 . 0 

and the generalized discrete measurement model from Equation 

Zv 

-k 

+ [0 ̂  
At At^ 

-k-1 

^k-1 

-k-1 

(4.68) 

where 

6 /k . ... _ °̂̂ k-l  ̂
6L, = —^ r t v(t) dt 

At' 
/ ̂  v(t) dt (4.53) 

^k-1 

The generalized mathematical model given by Equations 4.61, 

4.67, and 4.68 is a discrete Kalman filter with delayed 



www.manaraa.com

41  

states as observables. It was derived directly from the con­

tinuous system Equations 4.2 and 4.3 when sampling optimum-

linearized data containing white noise. 

D. Sampling Optimum-Linearized Data Containing Colored Noise 

The equations of the generalized system with colored 

measurement noise as shown in Figure 2 are repeated here for 

convenient reference. 

u(t) = F(t) uCt) + w(t) (4.15) 

z(t) = H(t) u(t) + n(t) (4.16) 

n(t) = A(t) n(t) + Bv(t) (4.17) 

After state vector augmentation, the reformulated system 

becomes 

u(t)l [F(t) 0 1 [uCt)l r wCt) 
(4.18) 

U(t) F(t) 0 u(t)' w(t) 

n(t) 0 A(t) n(t) B v(t) 

and 
z(t) = [H(t) I] u(t) 

inlfU 

0 (4.19) 

Applying the optimum-linearized data sampling process 

A (ôt, . + ZAt) t, 
L, = -\ f ^ t z(t) dt ^, f ^ z(t) dt (4.45) 

^ vi " ^ 

to the reformulated continuous measurement Equation 4.19 

gives 
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L, A ^  u(t)  dt  -  V ' ' '  

t, . t, (6t, 1 + 2At 
f H(t) u(t) dt + —y f t n(t) dt - X 

Vi ' ^ Vi ' ^ 

t 
/ ̂ n(t) dt + 5L^ (4.69) 

^k-1 

where 

ÔL^ = 0 (4.70) 

The noise n(t) is being treated as a state variable. This 

allows the measurement model Equation 4.19 to be perfect in 

augmented form and the corresponding noise term is zero. 

New states must be defined to simplify all terms of Equation 

4.69 for use in a discrete Kalman filter. Therefore define 

states 

u(t) = u(t) (4.71) 

v(t) = /H(tj u(t) dt (4.7 2) 

x(t) = /(/H(t) u(t) dt) dt = /^(t) dt (4.73) 

n(t) = n.(t) (4.74) 

s(t) = ;n(t) dt (4.75) 

r(t) = /(/n(t) dt) dt = /s(t) dt (4.76) 

Observe from Equations 4.55 and 4.71 through 4.76 that 

tk 
/ t H(t) u(t) dt = t^ %(%%) - \.i - x(tj^) 

Vl 

x(tj^_l) (4.77) 
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and that 

/ /  t  d t  =  s ( t ^ )  -  -  r ( t ^ )  *  

(4.78] 

Combining Equations 4.71 through 4.78 with given by Equa­

tions 4.69 and 4.70 reduces to 

h = ̂  + It ^ xCtj^) + ̂  x^tk-i) 

(4.79) 

where 

ôL^ = 0 (4.70) 

Equations 4.71 through 4.76 when differentiated become 

u(t) = F(t) u(t) + w(t) (4.80) 

v(t) = H(t) u(t) (4.81) 

x(t) = %(t) (4.82) 

n(t) = A(t) n(t) + B v(t) 

sfti - ar11 

(4.83) 

(4.84) 

f(t) = s(t) (4.85) 

which implies that the new continuous plant model for the 

colored noise case is 

'û(t)' F(t) 0 0 0 0 0 u(t) w(t) 

y(t) H(t) 0 0 0 0 0 z(t) 0 

x(t) 0 1 0 0 0 0 x(t) 0 

n(t) 0 0 0 A(t) 0 0 n(t) B v(t) 

s ( t )  0 0 0 1 0 0 s(t) 0 

r(t) 0 0 0 0 1 0 r(t) 0 

(4.86) 
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Defining the state transition matrix as before where 

FCt) 0 0 0 0 0 

H(t) 0 0 0 0 0 

0 1 0 0 0 0 

0 0 0 A(t) 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

*(t,t%_i) (4.87) 

the generalized discrete plant model from Equation 4.86 is 

^k k̂-1 w(t) 

Zk-1 0 

ik 

Ilk 

= *k-l 
-k-1 

-k-1 

+ j" ^ *(t,^t) 

Vi 

0 

B v(t) 

^k ^k-l 0 

Ik. .-k-1. 0 

dx (4.88) 

and the generalized discrete measurement model from Equations 

4 70 A 7n 4 T • / lAllVA T 9 t \J 

At At^ At At 
u 
•k 

Zk 

-k 

n, 

-k 

+ [0  
At At' 

0 ̂  -̂ ] 
At At^ 

^k-1 

Zk-1 

X 
-k-1 

n 
k-1 

+ 6 L, 

(4.89) 

-k-1 

-k-1 

where 

(4.70) 
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The generalized mathematical model Equations 4.70, 4.88 and 

4.89 comprise a discrete Kalman filter with delayed states 

as observables. It was derived directly from the continuous 

system Equations 4.15, 4.16, and 4.17 when sampling optimum-

linearized data containing colored noise. 
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V. AN EXAMPLE WITH WHITE MEASUREMENT NOISE 

An example with one additive white-noise input, or plant 

driving function, and a single output corrupted by additive 

white noise is considered in this chapter. The block diagram 

for this continuous system is shown in Figure 4. The system 

equations for this example corresponding to Equations 3.1 and 

3.2 for the plant and measurement models are respectively 

ù(t) = (0) u(t) + w(t) (5.1) 

z(t) = (1) u(t) + v(t) (5.2) 

The plant driving function w(t) and measurement noise v(t) 

are white-noise processes with statistics 

E{w(t)} = 0 for all t (5.3) 

E{w(t]^)w(t2)} = «^(t^-tg) (5.4) 

and 

E{v(t)} = 0 for all t (5.5) 

E{v(t^) v(t2)} = 3<S(t]L-t2) (5.6) 

where a and g are arbitrary scalar constants. 

Notice that for this one input-one output example the 

quantities u(t), w(t), z(t), and v(t) are not vectors. This 

type of system is chosen so that the mathematical solution 

and interpretation of the results would be less complicated 

than those for the more general type of problem treated in 

the previous chapter. Also observe that the plant and meas­

urement models are continuous; therefore, evaluations can be 

performed by either discrete or continuous filter techniques. 
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Figure 4. Block diagram for example with white measurement noise 
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The usual discrete Kalman filter cannot be applied due to 

the white measurement noise which causes an infinite variance 

of a sampled measurement value. The continuous Kalman-Bucy 

filter yielding optimum continuous results provides a basis 

for comparison of the modified discrete filter results. 

This completes the specification and general discussion 

of the problem. In the following sections the interval-

averaging, linearized-sampling, and Kalman-Bucy filter tech­

niques are applied to the system of this example. 

A. Interval-Averaging Filter 

The recursive filter equations developed here are based 

on the generalized system equations as given in Section A of 

Chapter IV where the interval-averaging process is defined by 

Equation 4.1. Comparing the generalized continuous system 

Equations 4.2 and 4.3 with the system Equations 5.1 and 5.2 

of the example shows that 

F(t) = 0 (5.7) 

H(t) = 1 (5.8) 

The new continuous plant model Equation 4.9 becomes 

'ù(t) 0 o" u(tj w(t) 

y(t) 1 0 y(t) 0 

Since the new plant matrix is a constant coefficient matrix, 

then by Equations 4.10 and 4.11 
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*k_l = *(At) = J!'̂ { 

- I  

I 

-1 

-1 

si 

s 0 

•1 s 

0 0 

_1 0 

-1 

1 

At 1 

1/s 0 

l/s2 1/s 

0 

(5.10) 

Equation 4.12 can be rewritten as 

"k 
1 0 

"k-l 

At 1 
/k-l 

/ 
k-l 

1 0 

(t.-T) 1 

W(T) 

0 
dx (5.11) 

which becomes after some simplifications the new discrete 

plant as described by 

"k 
1 0 

"k-l 

^k 
At 1 fk-l 
. L J 

w(T)dT 
^k-1 

ti' 
(t, -t) «(Tjdx 

^k-1 K 

( 5 . 1 2 )  

The new discrete measurement model is given by Equations 4.13 

and 4.14 and after a few changes is 

^k I» It' u 
k ' 1° Si u 

k-l 

fk-l 

+ 6z, f r t •? \ 
\^D ,  J.O J 

where 

5z 
k At ir / ̂  v(t) dt (5.1A1 

"k-l 
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This new discrete system defined by Equations 5.12, 5.13, 

and 5.14 is identical in form to the Kalman filter with 

delayed states as given in Chapter III where 

Xk = * 
k-1 -k-1 * -k-l 

hi = Mk ïk + \ ïk-1 * Ik 

Thus by direct correspondence 

-k " 

'k-1 

"k 

/k 

1 0 

At 1 

-k-1 

k 

'k-1 

/ W(T] dx 
ti 

/ ft, -TlwCTl dt 

k̂ = :k 

"k = 1° ZI ] 

Nv = to -^ ] -M, 

-k - ^ dt 

'k-1 

( 3 . 9 )  

(3.23) 

(5.15) 

(5.10) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

From Equations 5.6 and 5.20 and the definition of the meas­

urement noise covariance matrix 
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\ = ^ E{v(t^) v(t2)} dtg dt^ 

k-1 ^k-1 

= ^ J ^ 3(S(t^-t2) dt2 dtj 

tk-1 ^k-1 

S t  ( 5 - 2 1 )  

Using the definition of the plant noise covariance matrix, 

"k-1 " ̂ ^-k-1 -k-1^ 

and Equations 5.4 and 5.16, leads to the equations 

t t 
Hk_i(l,l) = / ̂  / ̂  E{W(T^) W'^CT^) dT^ di^ 

tk-1 ^k-1 

a / dT 

tv.i 

= a At 

-̂ k f̂ k 
Hk_i(l,2) = f ̂  ; (t^-T2)EW(T^)w^(T2) dT, dT} 

^k-1 ^k-1 

a / ̂  (tk'Ti) dT^ 

^k-1 

a 
At 
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Hj^_^(2,l) = / / (t^ - T^)K{W(Tj^)W^(T2) }dT2 di^ 

^k-1 ^k-1 

tk-1 

= a At2 

Hk.i(2,2) = / ̂  / ̂  Ctj^-T^)E{w(T^)w'^(T2)}(tj^-T2) dT2 dT^ 

^k-1 ^k-1 

= « // ''̂ 1 

^k-1 

Af 

and combining these equations leads to 

a At 

H 
k-1 

1 
O I  

At' 
« ~1 

At' Af 

(5.22) 

All necessary" quantities have now been determined for 

the application of the delayed state recursive Kalman filter­

ing Equations 3.21, 3.26, 3.27, and 3.28. Calculations can 

be performed after selecting values of the discrete time 

interval and values of the white noise amplitudes a and g. 
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B. Linearized-Sampling Filter 

Generalized filter equations with delayed states were 

derived in Section C of Chapter IV for cases where optimum-

linearized continuous measurements containing white noise were 

sampled. These equations are now applied directly to this 

example. As in the previous section 

F(t) = 0 (5.7) 

HCt) = 1 (5.8) 

The new continuous plant model given by Equation 4.64 after 

substitution of Equations 5.7 and 5.8 is 

(5.23) 

The plant matrix is a constant coefficient matrix; therefore, 

Equations 4.65 and 4.66 imply that 

Û ( t )  0 0 0 u(t) w(t) 

y i t )  = 1 0  0 y(t) + 0 

x(t) 0 1 0  x(t) 0 

= *(At) 

si -

-r' 

s 0 0 

•1 s 0 

0 -1 s 

0 0 0 

10 0 

0 10 

_ 1  
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1/s 0 0 

J'' l/s2 1/s 0 

1/s' l/s2 1/s 

1 0 0 

At 10 

At2/2 At 1 (5.24) 

Rewriting Equation 4.67 using Equation 5.24 yields the 

new discrete plant model 

"k 

^k 

^k_ 

1 

At 

0 0 

1 0 

At^/2 At 1 

"k-1 

fk-l 

Xk-1 

1 0 0 

1 0 

(tv-T)V2 (t,-T) 1 

W(T) 

0 

0 

dT 

Simplifying this equation produces 

t. 1 
c
 

"k 

1 

%
 

1 

0 0 

A 4-

At^/Z At 1 

"k-1 

'k-1 

^k-1 J 

'k-1 

W(T) dT 

%i y  t .  J  VL I  

'k-1 

2 
k 

k-1 

(5.25) 

The new discrete measurement model given by Equations 4.53 

and 4.68 with some minor changes is 
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Lj^ = [0 4/At ô/At^] 

Xi.  

2-, r 
+ 10 2/At 6/Atn 

"k-1 

fk-l 

*k-l 

+ ÔL, 

( 5 . 2 6 J  

where 

^ ^ / " t T(t) dt s_!__ ; k v(t) dt 6L,, » 
At 

k-l 
At 

k-l (5.27) 

Noting the direct relationship of the discrete system defined 

by Equations 5.25, 5.26 and 5.27 with the delayed state Kalman 

filter equations 

= *k-i ïk-i * ïk-i (3.9) 

ik = "k ïk "^^k -k-l -k (3.23) 

following observations 

"k 

y V. (5.28) 
-k ' k 

_^k 

1 0 0 

4k-l = At 1 0 (5.24) 

A 4- 2 /  ? A f  1 
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w 
k-1 

/ 
-k-1 

/k 

(tk-T)2/2 
^k-1 * 

Vf(T) dT 

W(T) dT 

W(T) dT 

(5.29) 

Zi = L, 

= 10 4/At -6/At'] 

2-N, = 

Ik 

[0 2/At 6/Atn 

6L. 

6 /k , A 

At' 
-k-1 

At 
/ v(t) dt (5.30) 

^k-1 

Several additional terms must now be evaluated. From Equa­

tions 5.6 and 5.30 

\ = E(lk ïk' 
t "t 

= —J / / t-| E{v(t,] 12 dt « dt, 

"  V i  ' k - 1  

(6 t, 1 + 2At) ̂ t, t, 
+ S-i-T / / E{v(t,) v(t,)}dt, dt, 

" 'k-1 'k-1 
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(6) (6 t,_, + 2At) t, t, 
^ E { v ( t ^ )  v C t g j l d t z  d t ^  

^k-1 ^k-1 

(6) (6 t, + 2At) t, t, 
~ -J  / / E{v(t^) dtg dtj^ 

^k-l ^k-1 

= ^(tk -4l) 

B(6t, 1 + 2At)^ 
+ (At) 

At4 

3G(6t%. •1 " 
2At) 

At^ 

33 (6tj^. •1 
+ 2At) 

it-

= M 
At 

Likewise using Equations 5=4 and 5=29; the definition 

"k-i * %-i' 

and considering each element separately leads to 

tv t, 
Hk_i(l>l) = a / I 6(11-12) dTg 

'tv-i 

= a / ̂  dT-| 

tk-l 

(5.31) 

= aAt 
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Hk-i(2,2) = a / / 

tk-1 ^k-1 

= a / ̂  (tk-Ti)^ dxj^ 

^k-1 

= 
3 

Hk_iC3,3) = a / ̂  / 

^k-1 ^k-1 ^ 

= i r (VT,]^dTi 

-k-1 

= a Af 
20 

Hk_i(l,2] = Hi^ .T(2,1) k-1 

^•v tv 
a ; J "(t^-T2)0(Ti-T2) ̂ '^2 ^"^1 

^k-1 ^k-1 

" // (tk-Tl) 4%! 

^k-1 

..2 
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= a /k A 

^k-1 ^k-1 

2 dTg dT^ 

= 1 

= a-Af 

Hk_i(2,3] = H%_i(3,2) 

tv. t^-T^ 9 

= a / / (-^ )^ô(t^-T2) dx2 dT^ 

^k-1 ^k-1 

= a-At 

Combining these results to a more compact form leads to the 

equation 

At At^/2 At^/6 

"k-l = " At^/2 At^/3 At^/S (5 

At^/6 At^/S At^/20 

The delayed state recursive Kalman filtering equations 

have now been completely formed for the linearized-sampling 

filter and only the numerical evaluation remains to be per­

formed. 
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C. Continuous Kalinan-Bucy Filter 

This example as shown in Figure 4 is a continuous system. 

Therefore Kalman-Bucy filter equations exist for this system. 

In particular, a continuous optimal gain matrix and the con­

tinuous error covariance matrix for this optimal gain can be 

determined in accordance with the methods outlines in Appendix 

A. The steady-state value of the continuous error covariance 

for the state u(t) in the example is a lower bound which is 

approached only from above by discrete filters as At ap­

proaches zero. 

Formulating the example in terms of Equations 10.1 and 

10.2 results in 

F(t) = 0 (5.33) 

M(t) = 1 (5.34) 

Q(t) = a (5.35) 

R(t) = g (5.36) 

From Equation 10,24 the set of equivalent equations ; used to 

solve the Ricatti equation for the error covariance matrix 

P(t|t) becomes 

Y(t) 0 a Y(t) 
(5.37) 

YXt) 0 a Y(t) 

Z ( t )  i 0 Z ( t )  
L J L- J L 

The transition matrix associated with this equation is 

[O al -1 

{ si - } 
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-I 
-1 

5 -(./%) 

c o s h  ( t - t g )  v S ê  s i n h  ( t - t g )  

sinh 
(xg 

(5.38) 

cosh (t-tq) 

Using Equation 5.38 in 10.30 if a = and b = -/a/3 

produces 

PCtlt) = Y(t) Z"^(t) 

Pq cosh b (t-tp) + a sinh b 

Pq i sinh b (t-tg) + cosh b 

PqI^-

bCt-tg) -b(t-tq) b(t-t„) -b(t-t„) 
+ e 

~T~ 
-] + a[' T -1 

p bCt-tp) -b(t-tQ) 
-e 

-] + [ 

bCt-tg) -bCt-tg) 
e + e ] 

-2b(t-t(,) -2b(t-t„) 
PqII + e " ] + a[l - e " ] 

Pn -ZbCt-tg) -2b(t-tJ 
J.[l - e ° + [1 t e ° ] 
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a [ l  ^  -  a l l  -

= [1 . Ml - ̂ ] 

where 

a = /^ (5.39) 

and where 

b=7| (5.40) 

The steady-state value of the continuous error-covariance for 

the state u(t) is defined as 

p = limit P(t It) (5.41) 
00 

t -r 00 

Combining the convenient form of Equation 5.38 with Equations 

5.39 and 5.41 reduces to 

P, 

P 
a(l + j^) - 0 

(1 + + 0 

= A 

= /ôF (5.42) 

D. Results 

Computation of the interval averaging and linearized-

sampling processes from recursive equations derived in pre­

ceding Sections A and B was accomplished by computer. The 

delayed-state Kalman filter equations were programmed using 

Fortran IV language and processed on the Iowa State University 

IBM-360, Model 65 computer. After choosing a, 3, At, k = 1 
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and Pq = 0, iterations on k were performed until the a poster­

iori estimation error covariance, Pj^(l,l), of the state u(t) 

reached a steady state value defined as Pgg(l,l). In all 

cases this value was the (1,1) element of the a posteriori 

estimation error-covariance matrix since the state u(t) was 

always the first element of the state vector. It was found 

necessary to perform all computations in double precision in 

order to prevent in Equation 3.26 from going to zero. This 

was essential since the inverse of is required in Equation 

3.27. Notice that Pq = 0 implies that the initial error-

covariance matrix was set equal to zero. The parameters, a 

and g, of plant and measurement white noise were chosen in 

each case to demonstrate the relative effects of noise ampli­

tude on the estimation error covariance as the discrete time 

interval varied. 

The computed steady-state a posteriori estimation error-

1 r T ^ T) C ^ ^ O-P ^ ^ 4 r» v» 1 ft 4- 4* \ . . \yvct .x juc4. i i .v . ,>^ vc4.xvA>^^ t  ^ 9 ^  J J .O 04ivy««Ai .  y  ju v /  u  uv/  

versus the discrete time interval in Figures 5 through 9 

where the selected values of a and R are as indicated on each 

figure. The lower bound of the continuous case steady-state 

error-covariance value, P , is also illustrated in each 
' 00 ' 

figure based on the Kalman-Bucy filter in Section C. 

For this simple example it was possible to mathematically 

process the iteration in general terms obtaining the dif­

ference equation of the error-covariance value of state u(t) 
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at tj^ strictly as a function of At and of the error-covari-

ance value at t^^^. This was done for both the interval-

averaging and linearized-sampling filters to provide a check 

of all computations. Steady-state conditions imply that the 

error-covariance values of u(t) at t^ and t^^^ should be equal 

when t is very large, i.e., P%^1,1) = P^_^(l,l) = Pgg(l,l). 

This condition was imposed on the difference equation with 

the following results. The steady-state error-covariance 

value of u(t) for the interval-averaging filter is 

Pgg(l,l) = + 0.08333333At^ (5.43) 

and for the linearized-sampling filter is 

" I [Vïl ^ - Atj (5.44) 

The values of Pgg(l,l) for Equations 5.43 and 5.44 did agree 

exactly with all iterative computer results. 

The steady-state error-covariance value approaches the 

Kalman-Bucy P^ as At becomes small for each case of the 

integral-averaging filter. The linear!zed-sampling result 

decreases towards P^ as At is reduced but then increases and 

in the limit approaches a value greater than P^. The cause of 

this increase in steady-state error as At decreases will be 

discussed in following paragraphs in detail. Figures 5 

through 9 clearly indicate, for the discrete time interval 

less than one, that the interval-averaging technique offers 

the best discrete filter. For the discrete time interval 
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greater than one the linearized-sampling process is best. In 

all cases this process yields a minimum Pgg(l,l) which does 

not occur as At approaches zero but which does occur at a At 

greater than one. The fact that this minimum value occurs 

at increasingly larger discrete intervals as the measurement 

noise amplitude increases relative to the plant noise ampli­

tude is verified in Figures 5, 6, and 7. Even though equiva­

lent measurement noise covariance, , for linearized-sampling 

is four times the value for interval-averaging, the quantities 

and ^ combine to increase and to hold b^ approxi­

mately constant for values of At greater than 1. From Equation 

T 
3.28 it is obvious that the term bj^ b^ will increase with 

the ultimate result being a reduction in the steady-state 

value of Pj^(l,l). The results show as expected that increas­

ing measurement noise amplitude also increases Pgg(l,l) for 

all filters. 

for very small At occurs when the linear least square fit 

approximates the noise rather than the trend of the signal. 

Consider a noisy measurement 

z(t) = 2 + 6z(t) (5.45] 

where the deterministic noise is 

(t-t, _j2ïï 
6z(t) = sin ^ (5.46) 

If = 0 and At = 1 then using the interval-averaging 
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process, Equation 4.1 produces 

^k-1 

1 
= / (2 + sin 2ïï t) dt 

0 

= 2 (5.47) 

and the linearized-sampling process, Equation 4.45, produces 

. t, (6ti_. + 2At) t, 
L, - —J f (t) z(t) dt - 2 / dt 
" t̂ .l At' 

1 1 
= 6 / (t) (2 + sin 2ïï t) dt - 2 / (2 + sin 2ir t] dt 

0 0 

= 1.045 (5.48) 

The averaging process yields a perfect discrete value. The 

linearized-sampling process approximates the noise and pro-

o c n T-vrxrN-v* iroTiic* T n +-  ̂ M f" m i- h f" "h h 4 c •n'vnhloTn 
Vt V* V, J.  ̂V* V./ J-i ̂  Vk V V.  ̂  ̂  ̂

occurs when the sampling frequency approaches the noise fre­

quency which is usually the case as At tends to zero. 
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VI. AN EXAMPLE WITH MARKOV MEASUREMENT NOISE 

The system with white measurement noise which was ana­

lyzed in Chapter V demonstrated that the linearized-sampling 

filter is an improvement over the interval-averaging filter 

for discrete time intervals greater than one. Of course this 

improvement has only been shown for white measurement noise. 

White measurement noise implies zero time correlation which 

may be the case if discrete measurements are taken at widely 

spaced time intervals. Typical continuous measurement proc­

esses are much more likely to have a noise which exhibits 

correlation at different instants of time i.e., colored noise. 

Thus, in order to verify that this improvement does in fact 

exist for a realistic or practical system, an example with 

one additive white-noise input and a single output corrupted 

by Markov noise is considered in this chapter. 

The block diagram for this system is shown in Figure 10. 

The system equations for this example corresponding to Equa­

tions 4.15 and 4.16 for the plant and measurement models are 

respectively 

û(t) = (0) u(t) + w(t) (6.1) 

z(t) = u(t) + n(t) (6.2) 

The zero-mean plant white noise w(t) and the zero-mean meas­

urement Markov noise n(t) are processes with statistics 

E{w(t)} = 0 for all t (6.3) 

E{w(tp wftg)} = aGft^-tg) (6.4) 
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w  ( t )  

=  a  S  ( r  )  

a=CONSTANT 

u ( t )  +  z ( t )  

+ ,i 

n ( t )  

<l>n (t) = or^e 

-;8|T 

cr2 = C0NSTANT 

/8= CONSTANT 

Figure 10. Block diagram for example with Markov measurement noise 
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and 

E{n(t)} = 0 for all t 

E{n(tj) n(t2)} = a e 

(6.5) 

(6.6) 

where a, 3, and a are arbitrary scalar constants. The quan­

tities u(t) , w(t) , z(t), and n(t) are not vectors since this 

example consists of only one input and one output. 

This model can be reformulated as illustrated in Figure 

11 by using a shaping filter with an input v(t) of additive 

white noise 

E{v(t)}= 0 for all t (6.7) 

E{v(t^) vftg)} = 0(t^-t2) (6.8) 

and an output n(t) of Markov noise defined by Equations 6.5 

and 6.6. The statistical character of n(t) is defined by a 

shaping filter equation similar to Equation 4.17 as 

n(t) = -3n(t) + v(t) (6.9) 

Slate vector augmentation yields the reformulated system 

U(t)' "o o '  

n(t)_ 0 -3.  

z(t) = [1 1] 

u(t) 

n(t)_ 

u(t) 

n(t) 

w(t) 

/2o"B v(t) 

Q 

( 6 . 1 0 )  

( 6 . 1 1 )  

where it is assumed that white noise processes w(t) and v(t) 

are uncorrelated. The augmented system measurements are 

observed to be perfect from Equation 6.11. 

As with the previous example, filter analysis can be 
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w(t) I 

ip^{r)=a 8(t) 

a = constant 

o"̂  = constant 
jS = constant 

</>v(^)= 8(T) 

u(t) z(t) 

n(t) 
1  

n(t) 
i 

/ 

Ln 

Figure 11. Block diagram for example with 
addition of shapâng filter 

Markov measurement noise after 



www.manaraa.com

76 

performed either by discrete or continuous methods because 

the reformulated plant and measurement models in Equations 

6.10 and 6.11 are continuous. The discrete Kalman filter can 

be used in this example since sampled continuous measurements 

containing Markov noise produce only finite variances. Both 

the continuous Kalman-Bucy filter yielding the lower bound of 

steady-state estimation error covariance and the discrete 

Kalman filter provide a basis for comparison of the modified 

discrete filter results. 

This completes the derivation and general discussion of 

the reformulated system after state vector augmentation. In 

the remainder of this chapter the discrete Kalman, interval-

averaging, linearized-sampling, and Kalman-Bucy filter tech­

niques are applied to the system of this example. 

The recursive Kalman filter equations for this example 

will be developed based on the generalized equations derived 

in Section B of Chapter III. Comparing the reformulated 

system, Equations 6.10 and 6.11 with the continuous model 

Equations 3.1 and 3.2 show that 

A. Discrete Kalman Filter 

hCt) = ^ 

0 0 
(6.12) 

0 - 6 

w(t) 
(6.13) 
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M(t) = Il 1] (6.14) 

v(t) = 0 (6.15) 

Since F is a constant, the transition matrix may be 

determined from Equation 3.8 as 

= HAt) 

0 0 

-r\ si -
0 -3 

-1 

} 

s 0 

0 s- B 

0 

1 

LO e'^"-j 

( 6 . 1 6 )  

Using this result gives the discrete model from Equations 3.9, 

3.10, and 3.11 as 

Ui 0 u 
k-1 W(T) dx 

'k-1 

(6.17) 

n. 0 e -BAt n 
k-1 

/ k -B(t,-T) 

'k-1 

Jl? B v(T)dT 
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u 
k + 0 (6.18) 

where 

w 
k-1 

/ w(t) dt 

'k-1 

/ e'^^^k"^) /la^b v(t) dx 

^k-l 

(6.19) 

Ik 

Ml. 

= 0 

= [1  1]  

( 6 . 2 0 )  

(6.21) 

and where the noiseless measurement is the sampled value 

of z(t) at time t^. Several additional quantities must now 

be evaluated. Notice that the measurement noise covariance 

Vk ' E'ïk 

=  0  ( 6 . 2 2 )  

is finite for this example. The plant noise covariance 

matrix is defined as 

"k-1 " ̂ ^-k-1 -k-l^ 

which gives the following elements from Equation 6.19. 

-k ^k 
^(1,1) = / J E{W(T^)W(T2) }dT2 dT^ 

k-1 "k-1 
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Hk_ia,2) =r / 

k-l ^k-1 

r / 

/-y- -SCt^-To) 
/2a 3 e E{w(t^)v(t2) (1x2 

- B ( t k - T j )  

0 ge E{V(T2^)W(T2) }dT2 

k-l "k-l 

^k ^k 
Hk_i(2,2) =/ / 2o"B e 

tk-1 ^k-1 

"3(tk-Ti) k '2-

E{v(T^) V(T2)} dT2 dT^ 

Using Equations 6.4 and 6.8 in these equations and recombin-

ing them into a matrix equation reduces to 

H 
k-l 

aAt 0 

0 o^Cl-e'^BAtj 

(6.23) 

after recalling that white noise processes w(t) and v(t) are 

uii\̂ u 1 1 X a. ccu • i iic ivaxmoii uiavicuc x x x l c i  c^uaLxuii:? 

^k * k - l  ^k-1 * k - l  ^ "k-l 

Kk = Pk < Pk 

Pi. = K - Ki, (M,, vl ul + ViJ KI I\ I\ IN. IN. I\ IN. I\ I\ 

(3.21) 

(3.18) 

(3.19) 

can now be computed since all necessary coefficients have been 

determined. 
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B. Interval-Averaging Filter 

The interval-averaging process defined by Equation 4.1 

will be applied to this example using the generalized equa­

tions derived in Section B of Chapter IV. Comparing the 

generalized reformulated system, Equations 4.18 and 4.19 with 

the reformulated system Equations 6.10 and 6.11 implies that 

F(t) = 0 (6.24) 

A(t) - -B (6.25) 

B = (6.26) 

H(t) = 1 (6.27) 

The interval-averaging process creates the new continuous 

model from Equation 4.26 which is 

û(t) 0 0 

n(t) 0 -3 

y(t) 1 0 

A(t^ 0 1 

Since the new plant 

Equations 3.8 4.11 

Vl I 

0 0 

0 0 

0 0 

0 0 

u(t)' w(t) 

n(t) 
+ 

v(t) 

y(t) 0 

s(t) 0 

( 6 . 2 8 )  

-1 r 
SI -

0 0 0 0 

0  - B  0  0  

0 0 i 
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i 
s 

0 

1 

Q 

s+3 

0 

0 

At 

0 

s(s+p) 

0 

e-pAt 

0 

B 

0 0 

0 0 

I  0  

0 i 
s 

0 0 

0 0 

1 0 

0 1 

(6.29) 

Rewriting Equation 4.28, it becomes after reduction the new 

discrete plant model given by the equation 

Ui 

n. 

fk 

'k-1 

"k-1 

+ 

fk-l 

®k-l 

/ ̂w(T) dT 

^V-1 

v(t5 dT 

'k-1 

f W(T) dT 

'k-i 

-k-1 
V(T) DX 

(6.30) 
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The new discrete measurement model from Equation 4.29 is 

z, = [ 0  0  k  " k  

"k 

^k 

Si. 

u 
k - 1  

n 
k-1 

fk-l 

^k-1 

+ 0 (6.31) 

Comparing this new mathematical system model Equations 6.30 

and 6.31 with the delay-state Kalman filter equations where 

( 3 . 9 )  % = •k-i ̂ k-i * %_i 

ik " ''k ik-1 ' •'k îk-1 ' Ik ( 3 . 2 3 )  

^k = 

by direct correspondence gives 

•-k 

"k 

^k 

^k 

1 

0 

At 

0 

(6.32) 

h-k-l 

0 

-BAt 
e 

0 

3 

0 0 

0 0 

1 0 

0 1 

( 6 . 3 3 )  
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-k-1 

/ ̂  W(T) dT 

^k-1 

K f—T -3(t,-T) 
/ ̂ /20'G e ^ V(T) dT 

-k-1 

/ CTI,-T) W(T) dx 

/ k 
-k-1 

-B(t.-t) 
[1-e ]V(T) DX 

-k ^k 

"k = 1" » It it] 

Ik = " 

The measurement noise covariance matrix is 

V, ! E(v, v^) 

= 0 

(6.34) 

(6.35) 

(6.36) 

(6.37) 

( 6 . 3 8 )  

(6.39) 

and the plant noise covariance matrix is given by the defini­

tion 

"k-1 " ̂ ^-k-1 -k-1^ 

which becomes 

-k-1 

J* E{w(t^) w(T2)} dig 

^k-1 

= aAt (6.40) 
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^k-1 ^k-1 

E{V(T^) vfTg)} dig (^"^1 

0^(1 - e'ZGAt) (6.41) 

'k 'v 
/ / (t]^-T2)E{w (T^)W(T2) } dr^ dx^ 

^k-1 ^k-1 

At^ 
« -J- (6.42) 

V l  V l ®  

E{V(T^) V(T2)} dT^ dT^ 

[At + YB ' IB (2-e GAt)2] (6.43) 

Hk_i(3,l) 

k̂ ;k 
/ / ^^k'^2^ E{W(T^) ̂ (Tg)} dTg dTj^ 

^k-1 ^k-1 

At 2 
(6.44) 



www.manaraa.com

85 

= J yK 2a^ e ^ ^ [1-e ^ ^ ] 

^k-1 ^k-1 

E{v(T^) v(T2)} dx^ dT^ 

= ̂  (1 - erGAt)2 (6.45) 

The Hj^_^ elements (1,2), (2,1), (1,4), (4,1), (2,3), (3,2), 

(3,4), and (4,3) are all zero since w(t) and v(t) are uncor-

related. 

The delayed-state Kalman filtering Equations 3.21, 3.26, 

and 3.28 may now be applied as all required quantities have 

been evaluated. Computations will be performed for various 

discrete time intervals after preselecting the noise param-

2 
eters a, a , and 6. 

C. Linearized-Sampling Filter 

The linearized-sampling process defined by Equation 4.45 

will be evaluated for this example using the generalized 

equations derived in Section D of Chapter IV. From the pre­

vious section Equations 6.24, 6.25, 6.26, and 6.27 still 

apply for the reformulated system and the new continuous 

plant model from Equation 4.86 is 
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u(t)' 0 0 0 0 0 0 uCt)" w(t) 

yit) 1 0 0 0 0 0 yCt) 0 

x(t) 0 1 0 0 0 0 x(t) 0 

n(t) 0  0  0 - 6 0 0  n(t) 
+ 

/ 2 ' 
/2a^3v(t) 

s(t) 0 0 0 1 0 0 s(t) 0 

_r(t)_ 0 0 0 0 1 0 _r(t)_ 0 

(6 

The state transition matrix for this constant plant matrix 

from Equation 4.87 is 

-I" 

0 0 0 0 0 0 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 0 -6 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

1 

s 

0 

0 

1 

s 

0 

0 

s + g 

1 
s (s + 3) s 

1 1 

S^(s+B) s^ 
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1 0 0 0 0 0 

At 1 0 0 0 0 

At 1 0 0 0 

0 0 0 
-3At 

e 0 0 

0 0 0 1 0 

0 0 0 At 1 0 0 0 At 1 

Rewriting Equation 4.88 and simplifying the latter term gives 

the new discrete plant model as 

"k-1 
h 1 
/ w(t) dT 

^k-1 

^k-l 
(ti^T) w(T) dT 

Vl 

^k Xk-1 

h ( t % - T)2 
j -A W(T) dT 

Vl 

"k 

= *k-l 

\-l 

+ 

A 6(t, t) / 2 
i e /la g v(T) dT 
^k-1 

^k ^ k - l  

t k  - 6 ( t , - T )  

/ 111® v(t) dx 

^k-1 ^ 

^k ^k-1 

tk "6(ti,-T) 
f l3(ti^-T) 1 + e ] r-rr-
J z /zo'g v(t) di 

J 
(6.48] 
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where is given by Equation 6.47. The new discrete meas­

urement model is obtained from Equation 4.89 as 

L], = [0 1-
At At At^ 

"k 

>̂ k 

n. 

+ [ 0 6 0  2_ 6 

At At^ At At^ 
^k-1 

^k-l 

X 
'k-1 

n 
k-1 

'k-1 

k-1 

+ 0 

(6.49) 

Direct correspondence of Equations 6.48 and 6.49 with the 

delayed-state Kalman filter equations 

k-1 -k-1 * -k-1 

Ik = Mk + "̂ k ik-1 * ïk 

provides the following relationships 

/ 1 .  

(3.9) 

(3.23) 

^k 
n 
k 

(6.50) 

'k 

The state transition matrix is given by Equation 6.47. 
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-k-1 

v(T )  dT 
t. 
k-1 

W(T) dx 

H-1 

h (t.-T) 

/ -V- w(t) dx 

-k-1 

I '  20 g v(x) dx 

-k-1 

'k „ 
/  I l  

t, B 
L. /za^g vCx) dx 

-k-1 

/ (t,-T)-l + e 
-B(tk-x) 

-k-1 
B' 

] r-j-
- /2a 3 v(x) dx 

(6.51) 

Ik = H 

"k " ~ ̂  ~ ̂  
At At^ At At 

Nĵ  = [0 — 0 ̂  
At Af^ At At' 

V k = 0 

(6.52) 

(6.53) 

(6.54) 

(6.55) 

Finally the measurement noise covariance matrix can be deter­

mined as 

^k = :(lk ll' 

= 0 (6.56) 
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The plant noise covariance matrix can be determined from 

T 
"k-i " ïic-i' (6.57) 

and Equation 6.51 where equations 

E{WCT^) WCt^)} = a6(T^ - T^] (6.4) 

E{v(T^) V(T2)} = 6(T^ - T^) (6.8) 

give the statistics of the additive white inputs. Since 

is a 6 X 6 dimension matrix, let it be partitioned to form 

H 
k-1 

'k-i ; 
0 

1 
0 , 

^k-l _ 

(6.58) 

for convenient notation where and are 3x3 dimen­

sion matrices. The zero elements follow directly from the 

fact that wft) and v(t) are uncorrelated. The matrix ^ 

is given by 

t,. ti. 
/ / Ii{w(Ti) W(T^) Idx^ CITt  

'4. *4. ± U U 1 

^k-1 ^k-1 

= aAt 

ti 
Gj^_l(2,2) = J J E{w(T^)W(T2) }dT2 

^k-1 ^k-1 

= a At-

Gk_i(3,3) = jr 

'k-1 ^k-1 

tk (tk-tn)^ (ti-t,)^ 
E{W(T^)W(T2) }dT2 dT^ 

- aAlA 
2 0  
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Gk.iCl,2) = Gj^_^(2,l) 

f 

= 0! At 

k-1 

2 

/ E{W(T^) W(t2)} CTg 

^k-1 

Gk_i(l,3) Gk-l(3,l) 

t 
. At' 

-k-1 
2 E{W(T^) W(T2)} dig dt^ 

k-1 

f 

= a At 

k-1 ^k-1 

4 

T 

h (tfT ) 
/ R{w(T^)w(T2)}dT2 dT^ 

Therefore 

'k-1 

aA t a 

A  f  

At' 

A f 

A  t  

«'-F 

At 
a -y 

A  t • 

a 
20 

(6.59) 
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tk_i k-1 

E{V(T^) VCT2)} dTg dx^ 

*2(1 - e'ZBAt) (6.60) 

J?lc 2a! JJ . . ̂-e(V̂ 2'j 

t -t B 
^k-1 ^k-1 

E{v(T^) vCig)} dTg dxj^ 

4- (6-Gl) 

^k-1 k-1 B 

-&(ti-T.) 
[B(tk-T2) - 1 + e ]E{v(tj^) v(t2)} dig dr^ 

24 [ L. §!M! -gat2 + At - 2At o-B«- 1 
2 g  3  2 6  

( 6 . 6 2 )  

Jk_l(2,l) 

/" ^ 2o2 

^k-1 ^k-1 

E{V(T^) V(T2)} dT2 dT^ 

§- (1 - e"GAt)2 (6.63) 
p  
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/•c /k - 1 

^k-1 ^k-1 
-gftk-T?) 

] E{V(T^) V(T2) } dTg d-r^ + e 

20^ r 1 A. -BAt e 
y- [ ̂  - At e ^—] (6.64) 

J%_l(2,3) = Jk_i(3,2) 

j?k yk [̂1 . e  _ 1 

'k-1 \-l 8' 

-ectk-T^) 
+ e ] E{v(T^) vCt^)} dT^ dT^ 

(6.65) 

This completes the evaluation of all necessary quantities for 

the implementation of the delayed-state Kalman filtering 

Equations 3.21, 3.26, 3.27, and 3.28. 

D. Continuous Kalman-Bucy Filter 

Kalman-Bucy filter equations exist for this example with 

Markov measurement noise since it is a continuous system as 

shown in Figure 10. Methods are outlined in Appendix B for 

determining the optimal gain matrix and the continuous error 
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covariance matrix for the optimal gain case when the measure­

ments are corrupted with colored noise. As in the white meas­

urement noise example, the steady-state value oT the continu­

ous error-covariance for state u(t) in this example represents 

a lower bound which is approached only from above by discrete 

filters as At approaches zero. 

Formulating the augmented system Equations 6.10 and 6.11 

of the example in terms of Equations 11.6 and 11.7 results in 

x(t) u(t)' 

n(t) _n(t)_ 
( 6 . 6 6 )  

From Equation 11.4 if 

T 
f w(.tj wuj 

E { 
'w(t) W(T) 

v(t) _V(T)_ 

F(t) = 0 (6.67) 

A(t) = -3 (6.68) 

w(t) = w(t) (6.69) 

v(t) = /ZoZg v(t) (6.70) 

z(t) = z(t) (6.71) 

M ( t ) - ^ (6-72) 

} ' 4  

w(t) 

O g v(t) 

/ 2 
[W(T) /2A G V(T)] } 

UU (t- I ) 

0 2a B 6(t-T) 

a 0 

0 ZaZg 
6(t-T) (6.73) 
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then 

Q(t) = a 

R(t) = ZpZg 

Equations 11.24 and 11.25 become 

'l 1 

and 

T = 

,-l 

.1 0 

0 1 

1 -1 

(6.74) 

(6.75) 

(6.76) 

(6.77) 

Thus 

z(t) u ( t ) '  
= T 

5(t) n(t). 

"l l" u(t)' 

1 0. n(t)_ 
(6.78) 

or z(t) 5 u(t) + n(t) and Ç(t) = u(t) implies that the state 

u(t) is being estimated directly. Of course the definition 

for J(t}; Equation 11.33. must also apply for the associated 

measurement as 

J(t) = M(t) F(t) - A(t) M(t) + M(t) 

=  ( 1 )  ( 0 )  -  ( - 6 )  ( 1 )  +  ( 0 )  

= B (6.79) 

The optimal gain matrix K(t) for this example is given by the 

above results and Equation 11.44 as 

K(t) = [P(t) jT(t) + Q(t) MT(t)][M(t) Q(t) M?(t) + R(t)]"'^ 

= (BP(t) + a) (a + Zo^B)"! (6.80) 
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For the optimal gain case the estimation error-covariance 

matrix is given as the solution of the matrix differential 

Equation 11.45 as 

P(t) = F(t) P(t) 4- P(t) pTft] + Q(t) - K(t) 

[M(t) QCt) M'^(t) + R(t)] f (t] 

= 0 + 0 + a - CGP(t) ; (a + 2a^B) 

(a + 2a 3) (a + 2a 3) 

= ct -

(a + 2a^3) 

= a - ( G P f t )  +  

(a + Y/a) 

= a - b p2(t] - c P(t) (6.81) 

Y = 2aa^3 (6.82) 

a = —. T ,—- (6.83) 
u -r \ y /  a  J  

' -

c = (X 

Equation 6.81 must be solved in order that Poo can be deter­

mined; therefore, assume a solution of the form 

P(t) = f + G (6.86) 

h + i e 

where f, g, h, and i are arbitrary constants. By substituting 

where 
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this equation into Equation 6.81 and equating like terms, 

Equation 6.86 is found to be a valid solution when 

h = (c + + 4 a b] f (6.87) 
2a 

i = (c * Jê * A a b) g (6.«s, 
2a 

The assumed form of P(t) allows to be easily evaluated 

from Equations 6.82 through 6.87 as 

= limit P(t) 

t->-00 

f 
ÏÏ 

2a 

c  +  " J +  4  a  b  

2Y 

C a ^ l )  

2aB ^ / 4a^g^ ^ 4YB^ 

(G + (e + (a + 1) 
V 

+ Y - A 

3(/ + Y + a) /a^ + Y a 

Y - a 

P 

where 

(6.89) 

Y = Zao^g (6.82) 

The steady-state value of the error-covariance for the state 

u(t) in this example with white plant noise and Markov 
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measurement noise is strictly a function of these noise 

parameters. 

E. Results 

Computation of the discrete Kalman, interval-averaging, 

and linearized-sampling filters as evaluated in the preceding 

Sections A, B, and C for the Markov measurement noise example 

was performed by digital computer. The determination of the 

steady-state value of the continuous error-covariance for 

state u(t) in this example is merely a matter of solving Equa-

2 
tions 6.82 and 6.89 for the various noise parameters a, a , 

and 3. A computer solution was not required for this value. 

As was the case for the white measurement noise example, 

the three discrete filters requiring computer solutions were 

programmed using Fortran IV language and processed on the Iowa 

State University IBM-360 Model 65 computer. After choosing 

2 a, G,g, At, k = 1 and P,-, = 0, iterations on k were performed 

until the a posteriori estimation error-covariance, P^(l,l), 

for the state u(t) reached a steady state value defined as 

Psg(l,l). The error-covariance element of the state u(t) was 

in all cases the (1,1) element. Again the quantity in 

Equation 3.26 was prevented from going to zero by performing 

all computations in double precision. The value Q, must be 

nonsingular since its inverse is required in Equation 3.27. 

The initial error-covariance matrix was set equal to zero by 

the equation Pg = 0, The noise parameters were selected to 
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represent the relative effects of various noise amplitudes 

and correlation times on PggCl,!) as the discrete time 

interval varied. 

The computed steady-state a posteriori estimation error-

covariance value of state u(t) for the three dis­

crete filters is shown plotted versus the discrete time 

interval in Figures 12 to 18 where the selected values of a,(T 

and 3 are as indicated on each figure. The lower bound of 

the steady-state continuous error-covariance value, P , is 
CO 

also noted. 

As the time interval approaches zero observe that for 

each set of noise parameters considered the value P^g(l,l) 

for all three discrete filters approaches from the Kalman-

Bucy filter. The 1inearized-sampling filter value of P^g(l,l) 

drifts away from similar to the white measurement noise 

example for 0.01 < ût < 0.1 where the linear least square fit 

in this process approximates the noise rather than the trend 

of the signal, but then it returns towards at smaller 

values of At. The larger correlation times, i.e., smaller g, 

appear to reduce thus drift away from P^. For larger B, 

smaller correlation time, P^^(l,l) for both prefiltering 

processes remains close to the lower limit P^ for the range 

of 0 < At < 1. 

Probably one of the most important results of this work 

is the fact none of the three discrete filters is "best" over 
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the whole range of discrete time intervals. The interval-

averaging filter produces the lowest value of steady-state 

covariance error over an approximate discrete time interval 

range of 0 < At < 1 ; in fact, for large values of B this 

process offers a considerable improvement over the discrete 

Kalman filter. The linearized-sampling process yields the 

best filter for the discrete time range of approximately 

1 < At < 10, and it too shows a sizeable reduction in 

Pgg(l,l) from the values obtained by either of the other two 

filters. Only when the discrete time interval exceeds a 

value of approximately 10 does the discrete Kalman filter 

offer the lowest P^^Cljl) value. In other words, the correct 

or best discrete filter to use in analyzing a system similar 

to this example, where continuous measurement data is cor­

rupted by Markov noise, depends primarily on the discrete 

time interval that is selected. 

Only for the case of very large correlation time or 

smaller g, Figure 12, is there no improvement of the interval-

averaging and linearized-sampling filters over the discrete 

Kalman filter. 
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VII. SUMMARY AND CONCLUSIONS 

The derivations in Chapter IV developed two methods of 

processing continuous noisy measurement data in a discrete 

Kalraan filter. The first method simply averages the contin­

uous measurements over the discrete time interval. In the 

second method a linear least square approximation of the data 

over the interval is sampled at the end of the interval to 

determine an equivalent noisy measurement. Examples with 

white and Markov measurement noise were evaluated using these 

new techniques as well as by the usual Kalman and Kalman-Bucy 

techniques for comparison. The results of these evaluations 

shown in Chapters V and VI demonstrate how the noise ampli­

tudes and noise correlation times affect the steady-state a 

posteriori estimation covariance-error value as the discrete 

time interval varies. 

A noteworthy contribution of this work is the method of 

analysis using the delayed state model. The interval-averag­

ing and linearized-sampling prefilters process only the con­

tinuous measurements to reduce unwanted measurement noise. 

By a judicious selection of state variables, the prefilter is 

incorporated into the continuous system yielding a modified 

discrete plant and measurement model which is equivalent to 

the model of the Kalman filter with delayed states as observ­

ables. The delayed-state model allows the interval-averaging 

and linearized-sampling filters to be treated by conventional 
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recursive techniques using a digital computer. 

The results of only the Markov measurement noise example 

are mentioned here since this type of system is more realistic 

from a practical standpoint. Neither prefiltering process im­

proves the discrete Kalman filter when the correlation time of 

the measurement noise approaches the discrete time interval. 

But as the correlation time is reduced relative to the time 

interval a significant improvement is noted in both methods. 

And it is seen that the effective measurement noise is sub­

stantially reduced over particular ranges of the discrete time 

interval. Each range is somewhat dependent upon the specific 

noise parameter values but in general terms the interval-

averaging filter should be used for the smallest time inter­

vals less than one. The linearized-sampling filter extends 

the effective measurement noise reduction from time intervals 

near one to ten and larger. For time intervals greater than 

this, the discrete Kalman filter should be used. In ether 

words, none of the three discrete filters is "best" over the 

whole range of discrete time intervals. Each discrete filter 

is applicable over a specific range of the discrete time 

interval. 

Thus, prefiltering or preprocessing of continuous noisy 

measurement data by the interval-averaging or linearized-

sampling techniques can improve the results of discrete Kalman 

filtering by reducing the effective measurement noise. Com­
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putation time may even be reduced if the discrete time inter­

val can be greater using the prefiltering techniques to 

produce results equivalent to those of the discrete Kalman 

filter. For some cases when the discrete time interval is 

not extremely large the results of the preprocessing discrete 

filters are comparable to those of the continuous Kalman-Bucy 

filter. 
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X. APPENDIX A 

A heuristic derivation of continuous Kalman-Bucy filter 

equations and the general solution of the error-covariance 

matrix differential equation are outlined below for a system 

with white plant noise and white measurement noise (6). 

As stated previously in Chapter III, the solution pro­

vides the unbiased, minimum variance estimate of the state 

x(t) from measurement data z^t) based on the linear system 

given by 

x(t) = F(t) x(t) + w(t) (10.1) 

^(t) = M(t) x(t) + v(t) (10.2) 

where 

E{w(t) w^(%)} = Q(t)6(t-T) and E{v(t) V^(T) } = R(t)6(t-T) 

Denote an estimate of the state x^tg) known at tg and 

based upon measurement data ^(tg) as x(tg |tg). Referring to 

Equation 10.1 and noting the white noise forcing function 

w(t), the estimate is described by 

x(t Itg) = F(t) X(t Itg) t > tg (10,3) 

in the absence of additional data. The availability of meas­

urement data ^(t) after tg and the determination of the ex­

pected measurement from Equation 10.2 as 

^(t |t) = M(t) x(t |t) (10.4) 

implies that there exists a "residual" difference between 

them. 



www.manaraa.com

115 

r(t) = ^(t) - z(t|t) (10.5) 

This contribution is considered to indicate the error in 

the estimate x(t |t) and as such is added to Equation 10.3 

after proper weighting by an unknown gain matrix K(t). Thus 

the unbiased minimum variance estimate of the linear system 

described by Equations 10.1 and 10.2 is given by the solution 

of the system 

x(t It) = F(t)x(t I t )  + KCt) [^(t)-M( t)x( t  I t )  ] for t>tQ (10.6) 

where x(tQltg) is known. It should be observed that the esti­

mate given by Equation 10.6 is unbiased meaning that 

E{x(t)} = E{x(t It)} 

is true if the initial condition x^t^ltg) satisfies the 

requirement 

Efx^tq)} = E{x(tQ Itg)} (10.7) 

As was the case with the discrete Kalman filter deriva­

tions, the gain matrix K(t) in the Kalman-Bucy filter, 

Equation 10.6 will be chosen to minimize the loss function. 

Make the following definitions: 

e ( t  I t )  =  x ( t | t )  -  x ( t )  =  e rror  o f  e s t imate  

"(t|t) = E{e(tlt)6^(t It)} = error covariance matrix 

L = trace P(t|t) = loss function 

Completing the details as described above using these 

definitions leads to the remaining equations for P(t|t) and 

K(t). 
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The Kalman-Bucy filter equations include Equations 10.6 

and 10.7 as well as the optimal gain matrix given by 

K(t) = P(t lt)M'^(t)R"\t) (10.8) 

and the error covariance matrix for the optimal gain case is 

given as the solution of the matrix differential equation 

P(t |t) = P(t |t)F?Ct) + F(t) P(t It) 

- P(t ̂ )M?Ct)R"l(t)M(t)P(t|t) + Q(t) (10.9) 

with known initial condition P( t g )  =  Pq.  

A matrix differential equation of the general type given 

by Equation 10.9 is called a matrix Ricatti equation. The 

general solution to this equation has been determined and is 

discussed below. 

The general matrix-Ricatti equation has the form 

W(t) = W(t)A'^(t) + A(t)W(t) + W(t)B(t)W(t) + C(t) (10.10) 

where W(t^) = is a non-negative definite matrix. Also 

A(t), B(t) and C(t) are nxn matrices of continuous functions 

with B(t) and C(t) being non-negative definite for t>tg. Using 

the method of Sorenson and Stubberud (6) consider the set of 

equations 

Y(t) = A(t)Y(t) + C(t)Z(t); Y(tn) = Wq (10.11) 

Z(t) = -B(t)Y(t) - A?(t)Z(t); Z(tQ) = I (10.12) 

where 

Y(t) = W(t)Z(t) (10.13) 

and therefore 

Y(t) = W(t)Z(t) + W(t)Z(t) (10.14) 
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Combining this equation with Equations 10.11 and 10.12 yields 

A(t)Y(t) + C(t)Z(t) = W(t)Z(t) - W(t)B(t)Y(t) - W(t)A'^(t)Z(t) 

(10.15) 

When the substitution of W(t)Z(t) for Y(t) is made, the re­

sult is 

[W(t) - W(t)A'^(t) - A(t)W(t) - Wft)B(t)W(t) - C(t)]Z(t) = 0 

(10.16) 

Assuming Z(t) is nonsingular for all t>tg implies that 

W(t) = W(t)A'^(t) + A(t)W(t) + W(t)B(t)W(t) + C(t) (10.17) 

but Equations 10.10 and 10.17 are identical. It follows then 

that Equation 10.13 is satisfied by Y(t) and Z(t) and, if Z(t) 

is nonsingular for all t>tQ, that 

W(t) = Y(t)Z"L(t) (10.18) 

is the general solution to Equation 10.10 with 

W (tg) = Y (to) Z "^(tg) = ( W q) ( I )  =  W G  ( 1 0 . 1 9 )  

The matrix Z(t) is a transition matrix describing the dynam­

ics and satisfying 

Z(t) = -AT(t)Z(t) - B(t)Y(t) 

= [-A'^(t) - B(t]W(t)lZ(t) (10.20) 

snd 

Z ( T Q )  =  I  ( 1 0 . 2 1 )  

therefore Z(t) has an inverse and is nonsingular as does a 

transition matrix. This justifies the assumption made in 

developing Equation 10.17. 
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Referring back to the Kalman-Bucy filter, Equations 10.8 

and 10.9, and comparing them to Equation 10.10 note that 

W(t) = P(t It) 

A(t] = F(t) 

B(t) = -NFct)R"l(t)MCt) 

C(t] = Q(t] 

WCtg) = PCtq) = Po 

Thus the equivalent set of equations for Equations 10.11 and 

10.12 becomes 

Y(t) = FCt)Y(t) + Q(t)Z(t); YCtg] = Pg (10.22) 

Z(t) = M^(t)R"^(t)M(t)Y(t) - F^t)Z(t); Zftg) = I (10.23) 

and combining them into one matrix equation shows that 

(10.24) 
T^t) F(t) Q(t) ' \^t) 

NF(t)R"l(t)M(t) -F^(t^ Z(t) 

Define the transition matrix 

4*2  ̂ (tjtg) 22 

<^2i (t.tg) $22 (titg) 

(t.tg) (10.25) 

where $(t,tQ) is the solution of the matrix differential 

equation 

d*(t,tQ) 

dt 

F(t) Q(t) 

NF(t)R"l(t)M(t)-FT(t) 
$(t,tQ) (10.26) 
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Therefore the solution to Equation 10.24 is 

Y(t) 

Z(t) 

or 

= 0(t,tQ) 

= *(t,to) 

YCtg) 

Z(to) 

0̂̂  

1 

°
 1 

42i(t,tQ) 4^2(t,tQ] I 

Y(t) = *ii(t,tQ) Pq + 

Z(t) = ^21(^*^0) ̂ 0 ̂  

Finally from Equations 10.18, 10.28, and 10.29 

P(t It) = Y(t) Z"^(t) 

[4hi Pfi 'I'l 9 (t ] ' 

[4'2i(t,tQ) PQ + (j)22(t,tQ)] 
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XI. APPENDIX B 

A special case of the continuous Kalman-Bucy filter is 

considered here for a system with white plant noise as in 

Appendix A but with colored measurement noise (6). The prob­

lem is reformulated by state vector augmentation to form a 

system in which only white-noise appears explicitly. The 

derivation retains the original unaugmented state vector x 

so that estimates are made directly on x. 

Recall that special treatment of the colored measurement 

noise problem is required because of the components of the 

measurement vector which contain only colored-noise. Unfor­

tunately, after the use of shaping filters and state vector 

augmentation, the unaugmented colored measurement noise ele­

ments become zero elements in the augmented measurement noise 

vector. This prevents the covariance matrix, R(t), of the 

augmented measurement vector from being positive-definite. 

Thus R ^(t) does not exist and the optimal gain matrix cannot 

be evaluated. The usual Kalman-Bucy equations therefore can­

not be used when the measurement noise is colored. 

Let a system be given as 

x(t) = F(t) x(t) + w(t) (11.1) 

^(t) = M(t) x(t) + n(t) (11.2) 

where n(t) is a process of zero mean colored-noise given by 

the shaping filter 

n(t) = A(t)n(t) + v(t) (11.3) 
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where A(t) and the statistics of the white noise v(t) are 

chosen such that n(t) has the prescribed statistics. The 

white noise processes w(t) and v(t) are uncorrelated and 

defined so that 

w(t) W(T)' 
T 
I = 

v(t) _V(T) 
J 

Q ( t )  0  

0 R(t) 

also the covariance of n(t) at tg is 

E{n(to)n'^(to)} = NCtg) 

The augmented system is 

"x(t) 

n(t) 

x(t) 

n(t] 

(11.4) 

(11.5) 

x(t)' 'F(t) 0 

n(t) 0 • A(t) 

w(t) 

v(t) 

z(t) = [M(t) I] + 0 

(11.6) 

(11.7) 

Note that the measurement in augmented form is perfect, i.e., 

noiseless. The solution to this problem presented hereafter 

is essentially that of Stear and Stubberud (13). 

One aspect of this problem is discussed first before 

dealing with it directly. It is possible to define 

x(t) = F(t) x(t) + w(t) 

"z, (t)' v(tj 
—J. = 1 

x(t) + 
_ 0 

(11.8) 

(11.9) 



www.manaraa.com

122 

where w(t) and v(t) are white noise and where m-vector 

contains white-noise, p vector is noise free and x is an 

(n+p) augmented state vector. 

Now redefine the state variables with subvectors 

C so that 

^2^ A Hzfty 

_{(t) ̂  H^ft) 
x(t) = T(t)x(t] (11.10) 

and 

TCt) 
HzCt) 

[H^Ct) 

(11 .11 )  

is defined so that T ^(t) exists, if = 0 and = L 

Let 

where 

,-l 
T "(t) = [J2(t) J3(t)] 

Jgft) = Hg^ft) (H2(t)H2'^t))'^ 

JL(t) = H_i(t) 

(11.12) 

(11.13) 

(11.14) 

-1 
From Equation 11.10 and since T (t) exists, it follows that 

x(t) = T'-'(t) z.(t) 
—^ 

S(t) 

FT r+^T f+^i 7 f f 1 

S(t) 

= JzftjZjCt) + J3(t)S(t) (11.15) 

Here the method of obtaining the estimate of x is reduced to 
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estimating £(t) which reduces the order of the filter from 

(n+p) to n since ^2 is known data. Thus 

x(t It) = J2(t)^2(^) + Jj(t)£(t It) (11.16) 

Referring to Equation 11.10 note that 

i(t) = HjCt) x(t) (11.17) 

Differentiating this equation and substituting in Equations 

11.8 and 11.15 using simplified notation yields 

i " '̂ 3̂ . •*" 

= HgfJgZg + J]!) + HgtFCJgZg + Jgi) + w] 

= [(Hg + HgFjJg] Ç + (Hg + H3F)J2Zj + HjW (11.18) 

This equation is equivalent to the general form of the plant 

model with a deterministic forcing function equal to 

(̂ 3 '̂3̂  ̂^2-2' 

The revised plant in terms of £ necessitates a new 

expression for measurement data (t) as 

Î.1 = Ĥ x + V 

- * hB * 1 

= + V (11.19) 

Define a new measurement of modified by a known quantity 

^1^2-2 

 ̂ - Hĵ J2̂ 2 (11.20) 

then 

Z = Ç + V (11.21) 
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The system formed by Equations 11.18, 11.20, and 11.21 form a 

new system which can be solved for the estimate of i(t) by 

previously derived Kalman-Bucy filter equations in Appendix A. 

After the estimate of ̂  is determined the estimate of the 

augmented state x is obtained from Equation 11.16. 

It is sometimes possible and usually more desirable to 

estimate the unaugmented state vector x(t) directly without 

having to use an intermediate step such as Equation 11.16. 

Returning to this problem let H^ft) in the transformation 

T(t), Equation 11.11 be defined as 

H3 = [I 0] 

and from Equation 11.7 let 

H^Ct) = [M(t) I] 

then 

A \(t)' M(t) 1 

"3 -
_I 0. 

(11.22) 

(11.23) 

(11.24) 

T'l(t) = [J2J3(t)] = (11.25) 
0 I 

_I -M(t)_ 

Using this transformation with the augmented state vector in 

Eauations 11.6 and 11.7 gives 

z(t) x(t) 
= T(t) 

i(t) n(t) 

'M(t) I x(t) 

I 0 n(t) 
(11.26) 
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and the filtered state is 

i(t) E x(t) (11.27) 

or in other words, the unaugmented x(t) is being estimated 

directly. Stated another way, the set of Equations 11.18, 

11.20 and 11.21 can now be used to estimate the unaugmented 

state vector x(t) directly from the continuous Kalman-Bucy 

equations derived in Appendix A where the transformation 

matrix quantities are determined from the given system as 

described by the augmented Equations 11.6 and 11.7. 

It is necessary to prove that Equation 11.18 does in fact 

describe x(t) in accordance with Equation 11.1. Note from 

Equation 11.22 that 

= 0 (11.28) 

Then using Equations 11.22, 11.25, 11.27, and 11.28 in 11.18 

leads to 

z, + [F 0] [0' 

h 
z, + [I 0] wl 

L Ĵ 
5 = (0 + [F 0]) r I] 5 + (0) fO' 
— I I I 

L-MJ 

t  =  F  C  +  0  +  0 + w  

or 

X = [F]x + [w] (11.29) 

which is identical to Equation 11.1. The measurement as 

given by Equation 11.20 is determined by differentiating 

Equation 11.2 thus 

^ = Mx + Mx + n 

= MFx + Mw + Mx + An + V (11.30) 
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Subtracting from both sides after noting that A^ = AMx+An 

gives 

. 
z - Az = MFx + Mx + An + V + Mw - AMx - An 

=  [ M F  - A M + M ]  x + M w + v  ( 1 1 . 3 ^ )  

define 

Z(t) = z - A(t)z = [J]x + [Mw + v] (11.32) 

J(t) = MF - A(t)M + M (11.33) 

which is equivalent to Equation 11.21. Note that the new 

system defined by Equations 11.29 and 11.32 can now be solved 

by previously derived equations and that here plant noise [w] 

is correlated to measurement noise [Mw + v] which causes no 

difficulty. 

Finally the estimate for x is given by 

X = F(t)x + K(t)[Z(t) - Z(t)] 

= F(t)x + K(t)[z - A(t)z - J(t)x] (11.34) 

For the new system defined by Equations 11.29 and 11.52 

observe that the new plant noise covariance is 

E{w(t) -J(t-T)} = Q(t)6(T) (11.35) 

The measurement noise covariance is 

E{[Mw(t) + V (t) ] [M w (t-x) 4- y(t-x)]'^}= M E{w^t)w^(t-T)}M^ 

+ E{v(t)w^(t-i)}M^ + M E{w(t) V^(t-T)} + E{v(t)v^(t-T)} 

= M Q(t) 6(T) m'^ + 0 + 0 + R(t) 6(T) (11.36) 
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The new cross correlation between the new plant and new 

measurement noise is 

E{ [w(t) ] [Mw(t-T) +v(t-T) ]'^}=E{w(t)^(t-T) }M^+E{w(t) (t-t)} 

= Q(t)6( T jwF+O (11.37) 

Thus according to the old system given by Equations 10.1 and 

10.2 and here denoted by primed quantities when noise cross 

correlation exists it is given by 

E{w'(t) v'Ct-T)} = C'(t)6(T) (11.38) 

and from Equations 11.35 and 11.38 in terms of primed correla­

tion matrices 

Q'(t) = Q(t) (11.39) 

R'(t) = M(t) Q(t) M(t)T + R(t) (11.40) 

C'(t) = Q(t) M^(t) (11.41) 

M'(t) = J(t) (11.42) 

F'(t) = F(t) (11.43) 

The optimal gain matrix K(t) which is known for the noise 

cross-correlation case of the primed or old system can be 

modified to represent the new system as 

K(t) = [P(t)M'^(t) + C'(t)]R'(t)"l 

= [P(t)/(t) + Q(t)MT(t)][M(t)Q(t)M?(t) + R(t)]"l 
(11.44) 

Likewise this can be done to determine the error-covariance 

matrix for the optimal gain case as given by the solution to 

the matrix differential equation 
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P(t) = F'(t) P(t) + PCt) - lP(t) M'T(t) + C'(t)] 

R'"^(t)[C''^(t) + M'Ct)P(t)] + Q'(t) 

= F(t)P(t) + P(t)F^(t) + Q(t) 

[M(t)Q'^(t)+jrt)P(t)l 

= F(t) P(t) + P(t) F^t) + Q(t) - K(tj [M(t) Q(t) M^(t) 

+ R(t)] KT(t) (11.4L) 

This concludes the generalized solution of the continuous 

Kalman-Bucy filter for the special case of colored measure­

ment noise. 
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